Course organization

~ Introduction ( Week 1-2)
— Course introduction
— A brief introduction to molecular biology
— A brief introduction to sequence comparison
« Part I: Algorithms for Sequence Analysis (Week 3 - 8)
— Chapter 1-3, Models and theories
» Probability theory and Statistics (Week 3)
» Algorithm complexity analysis (Week 4)
» Classic algorithms (Week 5)
— Chapter 4. Sequence alignment (week 6)
— Chapter 5. Hidden Markov Models ( week 7)
— Chapter 6. Multiple sequence alignment (week 8)
« Part Il: Algorithms for Network Biology (Week 9 - 16)
— Chapter 7. Omics landscape (week 9)
— Chapter 8. Microarrays, Clustering and Classification (week 10)
— Chapter 9. Computational Interpretation of Proteomics (week 11)
— Chapter 10. Network and Pathways (week 12,13)
— Chapter 11. Introduction to Bayesian Analysis (week 14,15)
— Chapter 12. Bayesian networks (week 16)



A scientist who has learned how to use probability theory

directly as extended logic has a great advantage in power and

versatility over one who has learned only a collection of
unrelated ad hoc devices.

- E. T. Jaynes, 1996
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Durbin book:
Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological

Sequence Analysis. Cambridge University Press.
(Errata page: http://selab.janelia.org/cupbook_errata.html)

DeGroot, M., Schervish, M., Probability and Statistics (4th Edition)

Other recommended background

Jaynes, E.T.,
Probability Theory: The logic of Science, Cambridge University Press, 2003
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Probability theory

for biological sequence analysis

® Applications
® BLAST significance tests

® The derivation of BLOSUM and PAM scoring matrices
® Position Weight Matrix (PWM or PSSM)
® Hidden Markov Models (HMM)

® Maximum likelihood methods for phylogenetic trees



Probability theory

® Definition
® P=0;> B =1
® (x)>0; f:fi(x)dx:l
® Examples:
® A fair dice: P =1/6,1=12,...,6.
® A random nucleotide sequence: P, =P.=P. =P =1/4

@® “i.i.d.”: independent, identically distributed



Probability theory

® Definition of random
@® Bertrand paradox (1898)

® Consider an equilateral triangle inscribed in a circle,

a chord of the circle is chosen at I'd ndom, what is
the probability that the chord is longer than a side of

the triangle?




Probability theory

Classical Terminology

Experiment: E.g.toss acoin 10 times or
sequence a genome

Qutcome: A possible result of an experiment,
E.g HHTHTTHHHT or ACGCTTATC

Sample space: The set of all possible
outcomes of some experiment

E.g.{H; T} or {A;C; G; T}*.

Event: Any subset of the sample space

E.g. 4 heads; DNA seqs w/no run of > 50 As.
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— Definitions, axioms, theorems (1)

® |f Sis asample space and A is an event, then Pr(A) is a number
representing its probability
® Axiom 1. For any event A, Pr(A) > 0

® Axiom 2. If S is a sample space, Pr(S) = 1
® Events A, B are disjoint iffA(1B=¢ ; The set {A1, A2, ...} is

disjoint iff every pair is disjoint. Disjoint events are mutually

exclusive.

® Axiom 3. For any finite or infinite collection of disjoint events

AL A2, .., Pr(UA) = > Pr(A)




~~ Definitions, axioms, theorems(2)

® Theorem 1. Pr(¢)=0

® Theorem 2. For any event A where Ac is the complement of A,

Pr(A®)=1-Pr(A) |° (A

AC
® Theorem 3. Forany eventA, 0<Pr(A)<1/( A )B

® Theorem4. IfACB,then Pr(A) < Pr(B)

® Theorem 5. Pr(AUB) =Pr(A)+Pr(B)—Pr(A(1B)
S

A_) B



Probability theory

@ Joint, conditional, and marginal probabilities
® Joint probability: P(A,B): “probability of A and B”
® Conditional probability: P(A|B) : “probability of A given B”
® P(A|B) = P(A, B)/P(B)
® Marginal probability: P(A)=>[P(A|B)*P(B)]=> P(A B)
® Examples: i i
® The occasionally dishonest casino. Two types of dice:
99% are fair, and 1% are loaded such that P, =0.5
Conditional P(6|loaded), joint P(6, loaded); marginal P(6)



Independence

® If Pr(A|B)=Pr(A), we say A is independent of B.
Pr(A, B) = Pr(A)Pr(B)
®|f A is independent of B, then B is independent of A.

®A and B are independent



Four rules for manipulating probability expressions
1. Chain rule

Example:

Pr(X,, X3, X5) Pr(X,, X;)
Prix;, %) Pr(x,)
_ Prix 1%, X3) PrX,, X5) Prix; [ X;) Pr(x;)

Pr(X;, X;) Pr(X;)
= Pr(Xl | X2 X3) Pr(x2 | X3) PF(X3)

Pr(X,, X, X3) = Pr(x;)

Pr(x,)



Four rules for manipulating probability expressions

2. Bayes rule

Example:
Pr(xl | Xz) PF(XZ) — Pr(xl’ Xz) — PI’(X2 | Xl) Pr(xl)

Prx, | X)) Pr(x)
Pr(x)

Pr(x1 | Xz) —



Four rules for manipulating probability expressions

3. Summing out (Marginalizing)

P(A) =D [P(A|B)*P(B)]= > P(A B)



Four rules for manipulating probability expressions

4. Exhaustive Conditionalization

Pr(x) =2 Pr(x,y) = > Pr(x|y)Pr(y)



Probability theory

@ Statistical inference
® Bayesian statistical inference
® Maximum likelihood inference
® Frequentist inference



Probability theory

®Bayesian statistical inference

The probability of a hypothesis, H, given some
data, D.

®Bayes’ rule: P(H|D) = P(H)*P(D|H)/P(D)
H: hypothesis, D: data

® P(H): prior probability
® P(D|H) : likelihood
® P(H|D): posterior probability

® P(D): marginal probability: P(D)=) P(D|H)P(H)



®Bayesian statistical inference
®Examples

Probability theory

1. The occasionally dishonest casino. We choose

a die, roll it three times, anc

every roll comes

up a 6. Did we pick a loaded dice?

(99% are fair, and 1% are loaded

such that P, =0.5)

Ans: Let H stand for “picked a loaded die”, then
P(H|6, 6, 6) = P(6, 6, 6|H) P(H)/P(6, 6,6) ~=0.21



Probability theory

® Maximum likelihood inference

® For a model M, find the best parameter ©={0;}
from a set of data D, i.e,,

oM =argmax P(D |6, M)
0

® Assume dataset D Is created by model M with
parameter ©,: K observable outcome w,, I=1, ...,
K, with frequencies n;, I=1, ..., K. Then, the best
estimation of P(w; |©,, M) Is n/2n,



Probability theory

®Maximum likelihood inference
®P(x|y): probability or likelihood

® L ikelihood ratios; log likelihood ratios (LLR)
P(D| ©, ,M)/P(D/ 8,,M); log(P(D| 8, ,M)/P(D/ 8,,M))
® Substitution matrices are LLRs

Derivation of BLOSUM matrices (Henikoff 1992
paper)
nterpretation of arbitrary score matrices as

probabilistic models (Altschul 1991 paper)



Probability theory

® Maximum likelihood inference
® Derivation of BLOSUM matrices (Henikoff 1992 paper)

® aa pair frequency table f: {f; }(1<i< j<20)
® Compute a LLR matrix

20 20
Q;; — fij /(>_J>_J fij)
i j
P — 4d;; _'_Zqij /2
1= ]

Expected probability of each i,j pair:

> - .
e — pi’lfJ_
. {Zpiij?'—'J

substitution matrix: S;; =109,(q;; /€;)




Probability theory

® Frequentist inference

®Statistical hypothesis testing and confidence
intervals

®Examples:
®Blast p-values and E-values
OP(S >=X)
®EXxpectation value, E=NP(S>=Xx)



Probability theory

®Information theory (fZEi8)
® How to measure the degree of conservation?
®Shannon entropy (F&RKS)
®Relative entropy (FBXT45)
e®Mutual information (E{EEE)



Probability theory

® Shannon entropy: A measure of uncertainty

® Probability P(x;) for discrete set of K events
X4, ..., X, the Shannon entropy H(X) is
defined as

H(X)=—3P(x)log P(x)

® Unit of Entropy: ‘bit’ (use logarithm base 2)

® H(X) iIs maximized when P(x;)=1/K for all I.

® H(X) is minimized when P(x,)=1, and P(x;)=0
for all i7K.



Probability theory

®|nformation: a measure of reduction of
uncertainty

®the difference between the entropy before
and after a ‘message’ is received

I(X) - Hbefore_ H

after



Probability theory

® Shannon entropy: A measure of uncertainty
® Example: in a DNA sequence ae{A, C, G, T}, P,=1/4; then
H(X)=->_P,log P, = 2bits

® |nformation: A measure of reduction In
uncertainty

®Example: measure the degree of conservation of a
position in a DNA sequence

In a position of many DNA sequences, if P-=0.5 and P;=0.5,
then H_.= - 0.5l0g,0.5 - 0.5log,0.5 = 1 bits.

The information content of this position is
2-1=1 bits



Patterns in Splice Sites

Donor Sites Acceptor Sites

20 -19 -18 -17 -16 -15 -14 -13 -12 -11 .10 99 -8 -7 6 -5 <4 3 2 4 : 152753

A A A A A

A
AAAAAAAAA

A L
0.09 0.11 0.130.16 0.19 0.22 0.26 0.29 0.34 0.39 0.35 0.30 0.28 0.30 0.43 0.47 0.01 0.84 2.00 2.00/0.24 0.06 0.
Total Bits 9.

20 -19 -18 -17 -16 -15 -14 13 -12 -11 10 9 -8 -7 6 5 4 3 -2 - 3123

0.10 0.10 0.120.18 0.13 0.23 0.22 0.26 0.31 0443 0430 0.33 0.23 0.30 0.40 ( 0‘44 0.02 0.85 2.00 2.00&0.37 0.09 0.
Total Bits 9.

= A
027 1.27 1.7 2.00 2,00 1.49 |.15 1.70 0,79 0.10 0.04 0.02 0.01 0.01 0.02 0.03 0.01 0.02 0.01 0.01 0.01 0.01 0.01
Total Bits 12.69

3 2 4{1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 U12 Branch Point
b ! FLY A : G = & N . A S
0.01 008 ¢ 0.171,171.93 2.00 2.00 2.00 2.00 2.00 1.59 0.59 0.04 0.02 0.010.01 0.01 0.02 0.00 0.01 0.01 0.00 0.04 1.05 156 1.66 1.81 1.80 0.90 1.60 1.28 006 005 004 002 006 012 008 071 200 1171013 025
Total Bits 15.75 Total Bits 11.66 Total Bits 4.

Josep F. Abril et al. Genome Res. 2005; 15: 111-119
Sequence data from RefSeq of human, mouse, rat and chicken.
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Probability theory

®Relative entropy. a measure of uncertainty
®a different type of entropy

P(x)
Q(X;)
®Property of a relative entropy
OH(P||Q) #H(Q||P)

OH(P||Q)=0
®Can be viewed as the expected LLR.

H(P|Q)=2P(x)log




Probability theory

® Proof of Relative entropy Is always nonnegative
" log(x) < x-1

Q(x;) Q(x;)
~~H(P][Q)=2P(x)log (XI)<ZP( )(P( x) -1)

— ;(Q(Xu) — P(Xi )) =0
~H(P|[Q)=0



Probability theory

® Mutual information M(XY)

M (XY) = £ P(x, y) log PZS(I,D)(/;)




Probability theory

®Parameter estimation
® Maximum likelihood estimation (ML)

® Maximum a posterior estimation(MAP)
® Expectation maximization (EM)



Probability theory

®Parameter estimation

® Maximum likelihood estimation: use the observed
frequencies as probability parameters, i.e.,

~count(x)
P(%) = > count(y)

® Maximum a posterior estimation(MAP)
®"Plus-one” prior,
®Pseudocounts



Probability theory

®Parameter estimation
® EM: A general algorithm for ML estimation with
“missing data”.
® [teration of two steps:

® E-step: using current parameters, estimate expected
counts

® M-step: using current expected counts, re-estimate
new parameters

®Example: Baum-Welch algorithm for HMM
parameter estimation.

®Convergence guaranteed
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