Course organization

~ Introduction (Week 1-2)
— Course introduction
— A brief introduction to molecular biology
— A brief introduction to sequence comparison
« Part I: Algorithms for Sequence Analysis (Week 3 - 8)
— Chapter 1-3, Models and theories
» Probability theory and Statistics (Week 3)
» Algorithm complexity analysis (Week 4)
» Classic algorithms (Week 5)
— Chapter 4. Sequence alignment (week 6)
— Chapter 5. Hidden Markov Models (week 7)
— Chapter 6. Multiple sequence alignment (week 8)
« Part Il: Algorithms for Network Biology (Week 9 - 16)
— Chapter 7. Omics landscape (week 9)
— Chapter 8. Microarrays, Clustering and Classification (week 10)
— Chapter 9. Computational Interpretation of Proteomics (week 11)
— Chapter 10. Network and Pathways (week 12,13)
— Chapter 11. Introduction to Bayesian Analysis (week 14,15)
— Chapter 12. Bayesian networks (week 16)

5 I"\.
- T &

2 i 2 = ,
1896 1920 1987 2006

Chapter 2:
Algorithm Complexity Analysis

Chaochun Wel
Spring 2018

Contents

* Reading materials

* Why do we need to analyze the complexity
of an algorithm?

« Examples

* Introduction

— Algorithm complexity
— “Big O” notation: O()

Cormen book:
Thomas, H. ,Cormen, Charles, E., Leiserson, and Ronald, L., Rivest.
Introduction to Algorithms, The MIT Press.

(read Chapter 1 and 2, page 1-44).

Algorithm complexity

A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon
regions of a human genome. We need to figure out the how
many exons were covered with at least 10 reads.

Steps:

1. Reads are aligned to the genome;

2. Each alignment is checked to see the exon it covers;

3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10.

Algorithm complexity

G &
Ay O
o 1one S

real example: Exon-capture data analysis

Exon N

A

Start”~ Site A SiteB N End Reference

Read - | Read e ~sequence
Read - |]
Read]
Read]
Read]

Depth=5 Depth=3

Algorithm complexity

1 days later

Student: I have created a program to do the analysis. It's running.

Teacher: Cool. Let me know when your analysis finishes.

Algorithm complexity

1y
> A‘S/'

&
GV

A real example: Exon-capture data analysis

6 days later...

Student: My program has been running for 5 days, and it keeps on
running. I have no idea about what is happening and what

to do with it.

Teacher: Its core is a sorting algorithm with a complexity of at most
O(N*IgN). It should be done within a few minutes!

Student: What?.....

Algorithm complexity

Algorithm and its complexity

An algorithm is any well-defined computational

procedure that takes in some inputs and produces
some OUTPULS.

Example: Sort an array of numbers
3,2,45,7,1,6>1,2,3,4,5,6,7

Algorithm and its complexity

An algorithm is any well-defined computational

procedure that takes in some inputs and produces some
outputs.

Complexity: a function of input size

®Time complexity: the running time
®Space complexity: the memory size required

Algorithm complexity

Algorithm and its complexity

Input size

®Number of items in the input
®Sorting problem
OFFT
® Total number of bits needed to represent the input
® Arithmetic operation (+,-,X,/)
®The value of input
®Factorial (N!)

Multiple input sizes
®Need to specify which input size is used
®Graph operation (number of Vertices, and edges)

Algorithm complexity

Algorithm and its complexity

Before we start
® We use a generic one-processor, random-
access machine.
No parallel

Algorithm complexity

Algorithm and its complexity

Example: Sort an array of humbers
5 2,4,6,1,3>1,2,34,5,6

Algorithm complexity

Algorithm and its complexity

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

Insertion sort (A)
for j = 2 to length(A)
do key = A[]j]
/*insert A[j] into the sorted sequence A[1...j-1]
I=3j-1
while i>0 and A[i]>key
do A[i+1]=A[i];
i=i-1;
Ali+1]=key;

Algorithm complexity

Algorithm and its complexity

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

for j = 2 to length(A)

*insert A[{] into the sorted sequence A[1...j-1]

while i>0 and Ali]>ke
do A[i+1]=A[i];
I=1-1;
Ali+1]=key;

15

Algorithm time complexity: O(N2)

Algorithm complexity

=" Worst-case and average-case analysis

Example: Sort an array of numbers

5,2,46,1,3->1,2, 3,4, 5,6
Can repeat

from O to |
times

while i>0 and Ali]>ke
do A[i+1]=A[i];
I=1-1;
Ali+1]=key;

16

Algorithm time complexity: O(N2)

Algorithm complexity

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

Insertion sort:
Algorithm run time complexity: O(N2)
Order of growth: 2

PE-TAN Algorithm complexity
O-notation (big-O notation):
Asymptotic upper bound

O(g(n)) = {f(n): there exist positive constants c
and n, such that 0<f(n) < c g(n) for all n=n,}

Note about O-notation operations:
O(k,;*N2+k,*N3)=0(N3) for constants k;, k,

Algorithm complexity

,'/
[P |
£ z)
\Z £)
\&, /

N,

o

O-notation (big-O notation):
Asymptotic upper bound

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

Insertion sort:
algorithm time complexity: O(N?2)

Algorithm complexity
5’“1 = 7

%’“f"*:’:::“-*“orting with time complexity of O(N*logN)

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6
8 A
for j = 2 to length(A)
0o Key = Al]
/*Use binary search to insert A[j]

/*into the sorted sequence A[1...j-1]
i=j-1

Binary _search(AJ[j], A[1...j-1],)

Algorithm complexity

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

There are a lot of sorting algorithms:
Heap sort (O(N*logN))
Merge sort (O(N*logN))
*Quick sort (worst-case O(N2), average O(N*logN))

Algorithm complexity

=" Merge sort

Merge-Sort (A, p, I)
if p<r
then q=[(p+r)/2]
Merge-Sort(A, p, q)
Merge-Sort(A,q+1,r)
Merge(A, P, 4, r)

Time Complexity:

. O(L);if N =1
()_{ZT(N/Z)‘FO(N);” N >1

Solve it: T(N) = O(N*logN)

Algorithm complexity

= Space complexity

Example: Sort an array of numbers
52,46,1,3>1,2,34,5,6

Need an array of size N: A[1...N], and 3
temporary variables O(N)

Example: Sequence alignment

Algorithm complexity

Algorithm complexity

Examples: Sequence alignment

® Needleman/Wunsch global alignment

® Smith/Waterman local alignment

24

Smith/Waterman local alignment (1981)

* Two sequences X = X;..x,and Y =y,...y,,

* Let F(l, J) be the optimal alignment score of X,
of XuptoxandY,; ;of YuptoY;(0=1=n, 0=/
< m), then we have

7(0,0) = 0

0
F(J' — 1, j — 1) + S(XJ-, yj)
F(j — 1, j)— d
F(j, J — 1)— d

F(j, j) = maxs

Sequence alignment

4 C A G C C U C G C U U A G

00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 10 00 00 00 00 00 00 00 00 00 10 00
00 00 10 07 00 00 00 00 00 00 00 00 10 07
00 00 00 07 03 00 10 00 00 00 10 10 00 07
00 o0 o0 10 03 00 00 07 10 00 00 07T 07 10
00 10 00 00 20 13 03 10 03 20 07 03 03 03
o0 10 o7 00 10 30 17 13 10 13 17 03 00 00
00 00 20 07 03 17 27 13 10 07 10 13 13 00
o0 00 07 17 03 13 27 23 10 07 17 20 10 10
o0 00 03 03 13 10 23 23 20 07 17 27 117 10
o0 00 00 13 00 10 10 20 33 20 17 13 23 27
00 00 10 00 100 03 07 07 20 30 17 13 23 20
o0 10 00 07 100 20 OT 1T 17 30 27 13 10 20
00 00 07 10 03 07 7T 03 27 17 27 23 10 20
o0 00 00 17 07 03 03 13 13 23 13 23 20 20

CoNroCmENOO0R>M

Fi:. 1. H matrix generated from the application of eqn (1) to the sequences A-A-U-G-C-C-A-U-U-G-A-
C-G-G and C-A-G-C-C-U-C-G-C-U-U-A-G. The underlined elements indicate the trackback path from the

maximal element 3-30. Smith and Waterman, JMB, 1981, 147, 195-197

Time complexity: O(N*M)

Space complexity: O(N*M) or O(max(N, M))
Need a two-dimension array of size N*M,

and a constant number of temporary variables

Algorithm complexity

Other issues impact the speed of a program

®Output size
®Blast: output can be a problem
® Input/Output method/place/mode
®Speed
® screen << hard disk << memory
®Programming language
®Speed
®Per|l < java < C++ <C

