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A scientist who has learned how to use probability theory 
directly as extended logic has a great advantage in power and 
versatility over one who has learned only a collection of 
unrelated ad hoc devices.   

– E. T. Jaynes, 1996
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Reading

吴军
数学之美，人民邮电出版社，2014 

Jaynes, E.T., 

Probability Theory: The logic of Science, Cambridge University Press, 2003
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Probability theory 
for biological sequence analysis

Applications

 BLAST significance tests

 The derivation of BLOSUM and PAM scoring matrices

 Position Weight Matrix (PWM or PSSM)

 Hidden Markov Models (HMM)

 Maximum likelihood methods for phylogenetic trees
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Probability theory 
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 Definition





 Examples:

 A fair dice:

 A random nucleotide sequence: 

 “i.i.d.”: independent, identically distributed
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Probability theory 

 Conditional, joint and marginal probabilities

 Joint probability: P(A,B): “probability of A and B”

 Conditional probability: P(A|B) : “probability of A given B” 

 P(A|B) = P(A, B)/P(B)

 Marginal probability: 

 Examples:

 The occasionally dishonest casino. Two types of dice: 

99% are fair, 1% are loaded such that 

Conditional P(6|loaded), joint P(6, loaded); marginal P(6)
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Statistical inference

 Bayesian statistical inference

 Maximum likelihood inference

 Frequentist inference

Probability theory 
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Bayesian statistical inference

The probability of a hypothesis, H, given 
some data, D.

Bayes’ rule:  P(H|D) = P(H)*P(D|H)/P(D) 

H: hypothesis, D: data

 P(H):             prior probability

 P(D|H) :         likelihood 

 P(H|D):          posterior probability

 P(D):             marginal probability:

Probability theory 
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Bayesian statistical inference

Examples 
1. The occasionally dishonest casino. We choose 

a die, roll it three times, and every roll comes 
up a 6. Did we pick a loaded die? 

Probability theory 
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Ans: Let H stand for “picked a loaded die”, then

P(H|6, 6, 6) = P(6, 6, 6|H) P(H)/P(6, 6,6) ~=0.21



Maximum likelihood inference

For a model M, find the best parameter Ѳ={Ѳi} 
from a set of data D, i.e.,

Assume dataset D is created by model M with 
parameter Ѳ0 : K observable outcome ωi, i=1, …, 
K, with frequencies ni, i=1, …, K.  Then, the best 
estimation of P(ωi |Ѳ0, M) is ni/Σnk. 

Probability theory 
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Maximum likelihood inference

P(x|y): probability(of x) or likelihood(of y)

Likelihood ratios; log likelihood ratios (LLR)

P(D| Ѳ1 ,M)/P(D/ Ѳ2,M); log(P(D| Ѳ1 ,M)/P(D/ Ѳ2,M))

Substitution matrices are LLRs

Derivation of BLOSUM matrices (Henikoff 1992 
paper)

Interpretation of arbitrary score matrices as 
probabilistic models (Altschul 1991 paper)

Probability theory 
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Maximum likelihood inference
Derivation of BLOSUM matrices (Henikoff 1992 paper)

 aa pair frequency table f: {fij }

Compute a LLR matrix

Expected probability of each i,j pair:

substitution matrix:

Probability theory 
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Frequentist inference

Statistical hypothesis testing and confidence 
intervals

Examples: 

Blast p-values and E-values

P(S >= x)

Expectation value, E=NP(S>=x)

Probability theory 
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Information theory

How to measure the degree of conservation? 

Shannon entropy

Relative entropy

Mutual information 

Probability theory 
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Shannon entropy: A measure of uncertainty

Probability P(xi) for discrete set of K events 
x1, …, xk, the Shannon entropy H(X) is 
defined as 

 Unit of Entropy: ‘bit’ (use logarithm base 2)

H(X) is maximized when P(xi)=1/K for all i. 

H(X) is minimized when P(xk)=1, and P(xi)=0 
for all i≠K. 

Probability theory 
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Information: a measure of reduction of uncertainty 

the difference between the entropy before and after 
a ‘message’ is received

I(X) = Hbefore – Hafter

Probability theory 
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Shannon entropy: A measure of uncertainty

 Example: in a DNA sequence aє{A, C, G, T}, Pa=1/4; then 

Information: A measure of reduction in uncertainty 

Example: measure the degree of conservation of a 
position in a DNA sequence

In a position of many DNA sequences, if PC=0.5 and PG=0.5, then 
Hafter= - 0.5log20.5 - 0.5log20.5 = 1 bits. 

The information content of this position is 

2-1=1 bits

Probability theory 
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Josep F. Abril et al. Genome Res. 2005; 15: 111-119

Patterns in Splice Sites
Donor Sites Acceptor Sites

Sequence data from RefSeq of human, mouse, rat and chicken.  



Relative entropy: a measure of uncertainty

a different type of entropy

Property of a relative entropy

H(P||Q) ≠H(Q||P)

H(P||Q) ≥ 0

Can be viewed as the expected LLR. 

Probability theory 
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Proof of Relative entropy is always nonnegative

Probability theory 
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Mutual information M(XY)

Probability theory 
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Parameter estimation
Maximum likelihood estimation (ML)

Maximum a posterior estimation(MAP)

Expectation maximization (EM)

Probability theory 
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Parameter estimation
Maximum likelihood estimation: use the observed 

frequencies as probability parameters, i.e.,

Maximum a posterior estimation(MAP)

“Plus-one” prior, 

Pseudocounts

Probability theory 

23




y

ycount

xcount
xP

)(

)(
)(



Parameter estimation
EM: A general algorithm for ML estimation with 

“missing data”.
 Iteration of two steps:

 E-step: using current parameters, estimate expected 
counts

M-step: using current expected counts, re-estimate 
new parameters

Example: Baum-Welch algorithm for HMM 
parameter estimation.

Convergence guaranteed 

Probability theory 
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