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Cormen book:

Thomas, H. ,Cormen, Charles, E., Leiserson, and Ronald, L., Rivest . 

Introduction to Algorithms, The MIT Press.

(read Chapter 1 and 2, page 1-44). 

Reading
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A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon
regions of a human genome. We need to figure out the how 
many exons were covered with at least 10 reads. 

Steps: 
1. Reads are aligned to the genome;
2. Each alignment is checked to see the exon it covers;
3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10. 

Algorithm complexity
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A real example: Exon-capture data analysis
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Algorithm complexity
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Student: I have created a program to do the analysis. It’s running.

Teacher:  Cool. Let me know when your analysis finishes. 

A real example: Exon-capture data analysis

1 days later

Algorithm complexity
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Student: My program has been running for 5 days, and it keeps on 
running. I have no idea about what is happening and what 
to do with it. 

Teacher: Its core is a sorting algorithm with a complexity of at most 
O(N*lgN). It should be done within a few minutes!

Student:  What?.....

A real example: Exon-capture data analysis

6 days later…

Algorithm complexity
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Algorithm and its complexity

An algorithm is any well-defined computational 

procedure that takes in some inputs and produces 

some outputs. 

Example:  Sort an array of numbers
3, 2, 4, 5, 7, 1, 6  1, 2, 3,4, 5,6,7

Algorithm complexity
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Algorithm and its complexity

An algorithm is any well-defined computational 
procedure that takes in some inputs and produces some 
outputs. 

Complexity: a function of input size
Time complexity: the running time
Space complexity: the memory size required
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Algorithm and its complexity

Input size
Number of items in the input

Sorting problem
FFT

Total number of bits needed to represent the input
Arithmetic operation (+,-,x,/)

The value of input
Factorial (N!)

Multiple input sizes
Need to specify which input size is used

Graph operation (number of Vertices, and edges)

Algorithm complexity
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Algorithm and its complexity

Before we start
 we use a generic one-processor, random-
access machine. 

No parallel 

Algorithm complexity
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Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity
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Algorithm and its complexity

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

5 2 4 6 1 3

2 5 4 6 1 3
2 4 5 6 1 3
2 4 5 6 1 3
1 2 4 5 6 3
1 2 3 4 5 6 ☺

Algorithm complexity



14

Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity
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Worst-case and average-case analysis

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

Can repeat 

from 0 to j 

times
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Order of growth

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort: 
Algorithm run time complexity: O(N2)
Order of growth: 2

Algorithm complexity
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O-notation (big-O notation): 
Asymptotic upper bound

O(g(n)) = {f(n): there exist positive constants c 
and n0 such that 0≤f(n) ≤ c g(n) for all n≥n0}

Algorithm complexity

Note about O-notation operations: 
O(k1*N2+k2*N3)=O(N3) for constants k1, k2
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O-notation (big-O notation): 
Asymptotic upper bound

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort: 
algorithm time complexity: O(N2)

Algorithm complexity
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Sorting with time complexity of O(N^2)

Sort (A)
for j = 2 to length(A)

do key = A[j]
/*Use binary search to insert A[j] 
/*into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Binary_search(A[j], A[1…j-1],)

Algorithm complexity
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Sorting

There are a lot of sorting algorithms: 
Heap sort (O(N*logN))
Merge sort (O(N*logN))
*Quick sort (worst-case O(N2), average O(N*logN))

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity
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Merge sort

Merge-Sort (A, p, r)
if p<r

then q=[(p+r)/2]
Merge-Sort(A, p, q)
Merge-Sort(A,q+1,r)
Merge(A, p, q, r)

Algorithm complexity
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Solve it: T(N) = O(N*logN) 
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Space complexity

Need an array of size N: A[1…N], and 3 
temporary variables 
O(N)

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity

Example:  Sequence alignment

Need a two-dimension array  of size N*M, and a 
constant number of  temporary variables
O(N*M) or O(max(N, M))
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Input/Output method/place/mode
Speed

 screen << hard disk << memory

Programming language
Speed

Perl < java < C++ <C

Output size
Blast: output can be a problem

Compressed data vs decompressed data

Smaller size
Higher read/write speed?

Algorithm complexity

Other issues


