
1896 1920 1987 2006

Chapter 2:
Algorithm Complexity Analysis

Chaochun Wei

Spring 2019

1

Contents

Reading materials

Why do we need to analyze the complexity

of an algorithm?

• Examples

Introduction

• Algorithm complexity

• “Big O” notation: O()

2

Cormen book:

Thomas, H. ,Cormen, Charles, E., Leiserson, and Ronald, L., Rivest .

Introduction to Algorithms, The MIT Press.

(read Chapter 1 and 2, page 1-44).

Reading

3

4

A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon
regions of a human genome. We need to figure out the how
many exons were covered with at least 10 reads.

Steps:
1. Reads are aligned to the genome;
2. Each alignment is checked to see the exon it covers;
3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10.

Algorithm complexity

5

A real example: Exon-capture data analysis

Exon N

Depth=3Depth=5

Site BSite A Reference

sequence
Start End

Read

Read

Read

Read

Read

Read

Algorithm complexity

6

Student: I have created a program to do the analysis. It’s running.

Teacher: Cool. Let me know when your analysis finishes.

A real example: Exon-capture data analysis

1 days later

Algorithm complexity

7

Student: My program has been running for 5 days, and it keeps on
running. I have no idea about what is happening and what
to do with it.

Teacher: Its core is a sorting algorithm with a complexity of at most
O(N*lgN). It should be done within a few minutes!

Student: What?.....

A real example: Exon-capture data analysis

6 days later…

Algorithm complexity

8

Algorithm and its complexity

An algorithm is any well-defined computational

procedure that takes in some inputs and produces

some outputs.

Example: Sort an array of numbers
3, 2, 4, 5, 7, 1, 6  1, 2, 3,4, 5,6,7

Algorithm complexity

9

Algorithm and its complexity

An algorithm is any well-defined computational
procedure that takes in some inputs and produces some
outputs.

Complexity: a function of input size
Time complexity: the running time
Space complexity: the memory size required

10

Algorithm and its complexity

Input size
Number of items in the input

Sorting problem
FFT

Total number of bits needed to represent the input
Arithmetic operation (+,-,x,/)

The value of input
Factorial (N!)

Multiple input sizes
Need to specify which input size is used

Graph operation (number of Vertices, and edges)

Algorithm complexity

11

Algorithm and its complexity

Before we start
 we use a generic one-processor, random-
access machine.

No parallel

Algorithm complexity

12

Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity

13

Algorithm and its complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

5 2 4 6 1 3

2 5 4 6 1 3
2 4 5 6 1 3
2 4 5 6 1 3
1 2 4 5 6 3
1 2 3 4 5 6 ☺

Algorithm complexity

14

Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

15

Worst-case and average-case analysis

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

Can repeat

from 0 to j

times

16

Order of growth

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort:
Algorithm run time complexity: O(N2)
Order of growth: 2

Algorithm complexity

17

O-notation (big-O notation):
Asymptotic upper bound

O(g(n)) = {f(n): there exist positive constants c
and n0 such that 0≤f(n) ≤ c g(n) for all n≥n0}

Algorithm complexity

Note about O-notation operations:
O(k1*N2+k2*N3)=O(N3) for constants k1, k2

18

O-notation (big-O notation):
Asymptotic upper bound

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort:
algorithm time complexity: O(N2)

Algorithm complexity

19

Sorting with time complexity of O(N^2)

Sort (A)
for j = 2 to length(A)

do key = A[j]
/*Use binary search to insert A[j]
/*into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Binary_search(A[j], A[1…j-1],)

Algorithm complexity

20

Sorting

There are a lot of sorting algorithms:
Heap sort (O(N*logN))
Merge sort (O(N*logN))
*Quick sort (worst-case O(N2), average O(N*logN))

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity

21

Merge sort

Merge-Sort (A, p, r)
if p<r

then q=[(p+r)/2]
Merge-Sort(A, p, q)
Merge-Sort(A,q+1,r)
Merge(A, p, q, r)

Algorithm complexity










1);()2/(2

1);1(
)(

NifNONT

NifO
NTTime Complexity:

Solve it: T(N) = O(N*logN)

22

Space complexity

Need an array of size N: A[1…N], and 3
temporary variables
O(N)

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity

Example: Sequence alignment

Need a two-dimension array of size N*M, and a
constant number of temporary variables
O(N*M) or O(max(N, M))

23

Input/Output method/place/mode
Speed

 screen << hard disk << memory

Programming language
Speed

Perl < java < C++ <C

Output size
Blast: output can be a problem

Compressed data vs decompressed data

Smaller size
Higher read/write speed?

Algorithm complexity

Other issues

