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Cormen book:

Thomas, H. ,Cormen, Charles, E., Leiserson, and Ronald, L., Rivest . 

Introduction to Algorithms, The MIT Press.

(read Chapter 1 and 2, page 1-44). 

Reading
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A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon
regions of a human genome. We need to figure out the how 
many exons were covered with at least 10 reads. 

Steps: 
1. Reads are aligned to the genome;
2. Each alignment is checked to see the exon it covers;
3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10. 

Algorithm complexity
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A real example: Exon-capture data analysis
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Algorithm complexity
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Student: I have created a program to do the analysis. It’s running.

Teacher:  Cool. Let me know when your analysis finishes. 

A real example: Exon-capture data analysis

1 days later

Algorithm complexity
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Student: My program has been running for 5 days, and it keeps on 
running. I have no idea about what is happening and what 
to do with it. 

Teacher: Its core is a sorting algorithm with a complexity of at most 
O(N*lgN). It should be done within a few minutes!

Student:  What?.....

A real example: Exon-capture data analysis

6 days later…

Algorithm complexity
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Algorithm and its complexity

An algorithm is any well-defined computational 

procedure that takes in some inputs and produces 

some outputs. 

Example:  Sort an array of numbers
3, 2, 4, 5, 7, 1, 6  1, 2, 3,4, 5,6,7

Algorithm complexity
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Algorithm and its complexity

An algorithm is any well-defined computational 
procedure that takes in some inputs and produces some 
outputs. 

Complexity: a function of input size
Time complexity: the running time
Space complexity: the memory size required
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Algorithm and its complexity

Input size
Number of items in the input

Sorting problem
FFT

Total number of bits needed to represent the input
Arithmetic operation (+,-,x,/)

The value of input
Factorial (N!)

Multiple input sizes
Need to specify which input size is used

Graph operation (number of Vertices, and edges)

Algorithm complexity



11

Algorithm and its complexity

Before we start
 we use a generic one-processor, random-
access machine. 

No parallel 

Algorithm complexity
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Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity
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Algorithm and its complexity

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

5 2 4 6 1 3

2 5 4 6 1 3
2 4 5 6 1 3
2 4 5 6 1 3
1 2 4 5 6 3
1 2 3 4 5 6 ☺

Algorithm complexity
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Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity
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Worst-case and average-case analysis

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

Can repeat 

from 0 to j 

times
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Order of growth

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort: 
Algorithm run time complexity: O(N2)
Order of growth: 2

Algorithm complexity



17

O-notation (big-O notation): 
Asymptotic upper bound

O(g(n)) = {f(n): there exist positive constants c 
and n0 such that 0≤f(n) ≤ c g(n) for all n≥n0}

Algorithm complexity

Note about O-notation operations: 
O(k1*N2+k2*N3)=O(N3) for constants k1, k2
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O-notation (big-O notation): 
Asymptotic upper bound

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Insertion sort: 
algorithm time complexity: O(N2)

Algorithm complexity
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Sorting with time complexity of O(N^2)

Sort (A)
for j = 2 to length(A)

do key = A[j]
/*Use binary search to insert A[j] 
/*into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key; 

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Binary_search(A[j], A[1…j-1],)

Algorithm complexity
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Sorting

There are a lot of sorting algorithms: 
Heap sort (O(N*logN))
Merge sort (O(N*logN))
*Quick sort (worst-case O(N2), average O(N*logN))

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity
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Merge sort

Merge-Sort (A, p, r)
if p<r

then q=[(p+r)/2]
Merge-Sort(A, p, q)
Merge-Sort(A,q+1,r)
Merge(A, p, q, r)

Algorithm complexity
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Solve it: T(N) = O(N*logN) 
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Space complexity

Need an array of size N: A[1…N], and 3 
temporary variables 
O(N)

Example:  Sort an array of numbers
5, 2, 4, 6, 1, 3  1, 2, 3,4, 5,6

Algorithm complexity

Example:  Sequence alignment

Need a two-dimension array  of size N*M, and a 
constant number of  temporary variables
O(N*M) or O(max(N, M))
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Input/Output method/place/mode
Speed

 screen << hard disk << memory

Programming language
Speed

Perl < java < C++ <C

Output size
Blast: output can be a problem

Compressed data vs decompressed data

Smaller size
Higher read/write speed?

Algorithm complexity

Other issues


