
1896 1920 1987 2006

Chapter 2:
Algorithm Complexity Analysis

Chaochun Wei

Spring 2019

1

Contents

Reading materials

Why do we need to analyze the complexity

of an algorithm?

• Examples

Introduction

• Algorithm complexity

• “Big O” notation: O()

2

Cormen book:

Thomas, H. ,Cormen, Charles, E., Leiserson, and Ronald, L., Rivest .

Introduction to Algorithms, The MIT Press.

(read Chapter 1 and 2, page 1-44).

Reading

3

4

A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon
regions of a human genome. We need to figure out the how
many exons were covered with at least 10 reads.

Steps:
1. Reads are aligned to the genome;
2. Each alignment is checked to see the exon it covers;
3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10.

Algorithm complexity

5

A real example: Exon-capture data analysis

Exon N

Depth=3Depth=5

Site BSite A Reference

sequence
Start End

Read

Read

Read

Read

Read

Read

Algorithm complexity

6

Student: I have created a program to do the analysis. It’s running.

Teacher: Cool. Let me know when your analysis finishes.

A real example: Exon-capture data analysis

1 days later

Algorithm complexity

7

Student: My program has been running for 5 days, and it keeps on
running. I have no idea about what is happening and what
to do with it.

Teacher: Its core is a sorting algorithm with a complexity of at most
O(N*lgN). It should be done within a few minutes!

Student: What?.....

A real example: Exon-capture data analysis

6 days later…

Algorithm complexity

8

Algorithm and its complexity

An algorithm is any well-defined computational

procedure that takes in some inputs and produces

some outputs.

Example: Sort an array of numbers
3, 2, 4, 5, 7, 1, 6 1, 2, 3,4, 5,6,7

Algorithm complexity

9

Algorithm and its complexity

An algorithm is any well-defined computational
procedure that takes in some inputs and produces some
outputs.

Complexity: a function of input size
Time complexity: the running time
Space complexity: the memory size required

10

Algorithm and its complexity

Input size
Number of items in the input

Sorting problem
FFT

Total number of bits needed to represent the input
Arithmetic operation (+,-,x,/)

The value of input
Factorial (N!)

Multiple input sizes
Need to specify which input size is used

Graph operation (number of Vertices, and edges)

Algorithm complexity

11

Algorithm and its complexity

Before we start
 we use a generic one-processor, random-
access machine.

No parallel

Algorithm complexity

12

Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Algorithm complexity

13

Algorithm and its complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

5 2 4 6 1 3

2 5 4 6 1 3
2 4 5 6 1 3
2 4 5 6 1 3
1 2 4 5 6 3
1 2 3 4 5 6 ☺

Algorithm complexity

14

Algorithm and its complexity

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

15

Worst-case and average-case analysis

Insertion sort (A)
for j = 2 to length(A)

do key = A[j]
/*insert A[j] into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Algorithm time complexity: O(N2)

Algorithm complexity

Can repeat

from 0 to j

times

16

Order of growth

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Insertion sort:
Algorithm run time complexity: O(N2)
Order of growth: 2

Algorithm complexity

17

O-notation (big-O notation):
Asymptotic upper bound

O(g(n)) = {f(n): there exist positive constants c
and n0 such that 0≤f(n) ≤ c g(n) for all n≥n0}

Algorithm complexity

Note about O-notation operations:
O(k1*N2+k2*N3)=O(N3) for constants k1, k2

18

O-notation (big-O notation):
Asymptotic upper bound

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Insertion sort:
algorithm time complexity: O(N2)

Algorithm complexity

19

Sorting with time complexity of O(N^2)

Sort (A)
for j = 2 to length(A)

do key = A[j]
/*Use binary search to insert A[j]
/*into the sorted sequence A[1…j-1]
i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i];
i=i-1;

A[i+1]=key;

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Binary_search(A[j], A[1…j-1],)

Algorithm complexity

20

Sorting

There are a lot of sorting algorithms:
Heap sort (O(N*logN))
Merge sort (O(N*logN))
*Quick sort (worst-case O(N2), average O(N*logN))

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Algorithm complexity

21

Merge sort

Merge-Sort (A, p, r)
if p<r

then q=[(p+r)/2]
Merge-Sort(A, p, q)
Merge-Sort(A,q+1,r)
Merge(A, p, q, r)

Algorithm complexity

1);()2/(2

1);1(
)(

NifNONT

NifO
NTTime Complexity:

Solve it: T(N) = O(N*logN)

22

Space complexity

Need an array of size N: A[1…N], and 3
temporary variables
O(N)

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 1, 2, 3,4, 5,6

Algorithm complexity

Example: Sequence alignment

Need a two-dimension array of size N*M, and a
constant number of temporary variables
O(N*M) or O(max(N, M))

23

Input/Output method/place/mode
Speed

 screen << hard disk << memory

Programming language
Speed

Perl < java < C++ <C

Output size
Blast: output can be a problem

Compressed data vs decompressed data

Smaller size
Higher read/write speed?

Algorithm complexity

Other issues

