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arkov chain: a process that the current state depends
on at most a limited number of previous states

Weather
* Sunny, Rain, Rain, Sunny, Cloudy, Cloudy,....

Stock market index

 Up, up, down, down, down, up, up, up, ....
Girl/Boy friend’s mood

* High, low, low, high, high, high, ...
Genome sequence

- ATGTTAGATATAACAGATAA
Flip coins

e HTTTHHHHHH



Hidden Markov Model

HMM for two biased coins flipping

0.9

e,(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T)=0.7

[THHTTHTTTTTHTHHHHHTHTH Observed sequence X

Hidden state sequence 7C

7" =argmax P(X, )

T



Hidden Markov Model

Elements of an HMM (N, M, A, B, Init)

1.

3.

4.

D.

N: number of states in the model
« S={S,, S,, ..., Sy}, and the state at time t is .
M: alphabet size (the number of observation symbols)
* V={v,, V,, ..., V\y}
A: state transition probability distribution
* A={a;} where a,;=P[q.,=Sj|a=S]], 1=i,j =N
E: emission probability

* E={g;(k)} (observation symbols probability distribution in
state j), where e(k)=P[v, att]| g, = S}, 1 <j <N, 1 <k <M

Init: initial state probability
 Init={l}, where =P[q,=S], 1 si =N.



HMM is a generative model

HMM can be used as a generator to produce an
observation sequence 0=0,0....0, where each
O, Is one of the symbols from V, and T is the
number of observations in the sequence.

1. Choose an initial state q,=S;according to Init;
2. Sett=1;

3. Choose O,=v, according to e;(k) (the symbol
probability distribution in state S));

4. Transit to a new state q,,,=S; according to a;;

Set t=t+1; return to step 3 If t<T; otherwise terminate
the procedure.



HMM is a generative model

HMM for two biased coins flipping

0.9

e,(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T)=0.7

[THHTTHTTTTTHTHHHHHTHTH Observed sequence X

Hidden state sequence 7C

P(x,z|4)=1nit, *e_(x(0))* II (a, e,  (X(1))

O<i<T



HMM is a generative model

HMM for two biased coins flipping

( 09 ) ( 02 ]
N\ 1 0.1 0.1
Begin) — - -

e(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T) = 0.7

TTHHT Observed sequence x

Hidden state sequence TC

Plx,m!| 1) =2



HMM is a generative model

HMM for two biased coins flipping

(09 ) ( 02 )
N\ 1 0.1 0.1
Begin) — - -

e(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T) = 0.7

TTHHT Observed sequence x

Hidden state sequence TC

P(x, 7| 2) = Init, *e, (x(O)* I1 (a,, e, (x(i))

O<i<T

=17e,(T) " (a,,&,(T)) * (a8, (H)) ™ (a,,€, (H)) * (2,46, (T ))
=1*%0.2*(0.9%0.2)*(0.1*0.3)*(0.2*0.3)*(0.7*0.2)



Hidden Markov Model

HMM: A={A, B,Init}

Three basic problems for Hmms

1. Given the observation sequence 0=0,0,...0;, and a model
A={A, B, Init}, how to compute P(O| A)?
2. Given the observation sequence 0=0,0,...0;, and a model

A={A, B, Init}, how to choose a corresponding state sequence
Q=q,9,...dy, which is optimal in some meaningful sense..

3. How to estimate model parameters A={A, B, Init} to maximize
P(O| A).



Hidden Markov Model

HMM: A={A, B, Init}

Three basic problems for HMMs

1. From the observation sequence and the model to a
joint probability;
2. Find the best hidden state sequence;

3. Optimize the model parameters;
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Most Probable Path and Viterbi Algorithm
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Let f(1)= max (Pr(Xy,., X s X, Zyyeees T, 7T, =1))

{7y, 7ig}
Recursion (i=1...L)
f, (1) =¢(x) mﬁix( f (1—1)a,);
ptr; (1) = argmax(f, (1-1)a,).

Time complexity O(N?ZL) space complexity O(NL)
Solution to problem 2: prob of best state sequence



> Viterbi for the HMM for two biased coins flipping

@ < 0.2\
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence JC
T T H H T

0 1 2 3 4




.2, Viterbi for the HMM for two biased coins flipping

0.2

( 0.9 ] ( ]
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,e,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence JC

T T H H T
0 1 2 3 4
0.2 | Max0.2*(0. | max0.8*(0.036* | Max 0.8 * =max0.2*(0.018662*
1 9+*0.2, 0) |0.9,0.014*0.7) |(0.0259%0.9, 0.9, 0.000777*0.7) =
= 0.036 = 0.0259 0.0108*0.7 ) = [0.D03359
—>\\ \ 0.018662

0 ax0.7*( 0. | Max0.3*(0.036* ) ax0.3(0.0259* ax0.3(0.018662*0 |
2 2X0.1, 0) [0.70.014*0.2) | 0¥, 0.0108*0.2) |.1N9.000777*0.7) =
= 0.0408 = 0.000777 0.0005599

=0.6014




Probability of All the Possible Paths
and Forward Algorithm

0 1 2 i-1 i -1 L
;ﬁ 1 @ @ @ oo O o\o vee @ ®
@©
2 2 @ @ @ ¢ @ 0 @ eec @ °

et f (i)=|:’r(XO...,Xi,7Z'i =1)
Initialization (i=1...L) f (I) TT.E. (Xo)
Recursion (i=1...L) T (1) =¢ (X,)Z( f,(1-Day)

Probabillity of all the
probable paths P(x) = ZP(X ) = Z f. (L)

Solution to problem 1 *



states

- Posterior Probability and Forward and

Backward Algorithm

1 2 -1 i
eoe @ ()

c o eme oFe e o

P(z. =k, X)
P(x)

Posterior Probability P(ﬂ'i — Kk ‘ X) _
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Let H(7) =Prx, ., X, .., %,7, =Kk)

b ()=1 1<i<N
bl (1) = Z (alkek (Xi ))b|+1(i)’
|=L-1,L-2,...,01<i<N

Initialization (i=1...L)

Recursion (i=1...L)

Probability of all the
probable paths P(x) =Y P(x,7)=> b (0)
T k



Optimize the model parameters

HMM: A={A, B, Init}

With annotations

« Maximum likely-hood

Without annotations
« EM algorithm



Optimize the model parameters

HMM: A={A, B, Init}, Without annotations
Baum-Welch method (EM method)
Let &, ))=P(z =1,7,=][X4)

then §I (I’ J) — N Nfl (i)aijej (X|+1)bl+1(j)
zizzj:( f (D& e, (X.1)b,, (1))

N
Let 7 (i)zgléﬂ (1, J)
N
then Dy () = expected number of transitions from S,

N
EO & (1, J) = expected number of transition S;to S,



27 Optimize the model parameters(2)

> HMM: A={A, B, Init}, Without annotations
Baum-Welch method (EM method)

Then, Initi = expected frequency in S; at time 0 = %, (1)
L-1 o
- expected number of tranistiom from S, to S, @~ &, J)
ai,j = = —
’ expected number of tranistioms from S, R
z ()

> 7,0

- expected number of times in state 1 andoberving symbol v, .-,

6’1‘(1() = =
expected number of times in state i Lo
50



One more example: Flipping two coins

{\ 0.8

0.9 Coin Coin H: 0.5

/ A % A T: 0.5

0.19 T _

0.1
/
0.05

o~

U 0.85
O= HHTHHTTTHT, P(OJA)=?

Problem 1: Given the observation sequence 0=0,0,...0;, and
a model A={A, B, Init}, how to compute P(O| A), the probability

of the observation sequence given the model? ,
.



Initialization (j=1...N)

Recursion (i=1...L;

Probability of all the

J=1,

probable paths

. N)

f.f (0) =7 €; (x())
f,(=e (x)> (f.(i-Da,)

P(x)=Y P(x.7)= fi(L)

H H T H H T T T H T Emdi
A 0.073 | 0.031 | 0.013 | 0.053 | 0.023 | 0.001 |5.817 | 2.580

0.45 1018145 |42 loe |71 las |11 |es |es 5 4
B 0.02 l0.0205! 0.041 | 0.009 | 0.002 | 0.003 | 0.003 | 0.002 | 5.067 | 4.329 | 3e-5

45 |83 |86 |9a |49 |73 |ea |eas
—

" 0 2 i-1 i L-1 L
Q 1 © @ oo @ @ @ see @ @
3 2 @ @ +cc @ o+\‘o s @ @

Let S, @) =Pr(x;,...x;, 7, = J)




O= HHTHHTTTHT
argmax(P(O, Q, A))

Problem 2: Given the observation sequence 0=0,0,...0, and
a model A={A, B, Init}, how to choose a corresponding state
sequence Q=q,q,...qy, Which is optimal in some meaningful
sense..

24



Viterbi Algorithms
"A>SA>A>A>A>B->B->B->B->B

H H T H Hi T T T H T Emdl
0.072 | 0.028 },0.011 [ 0.004 | 1.843 | 7.372 |12.949 | 1.180
*0'45 0.18 s D5 D6 Me3 Pes *e—él % es 468
B 0.02 | 0.01 |0.02744.652 |1.109 |1.751 | 1.191 ,/ 8.097 | 1.376 | 9.360 }. Oe-6
71 4 e-3 e-3 e-3 e-3 e-4 e-4 *e—S
" 0 1 2 i-1 i L-1
2 1 0 o @ ecc O ® ) ese @
(1]
"u-'J' 2 . .. . ee e . .ﬁ.\.

Let f;@)= max (Pr(x,.....x,.x;.
(T ey}

Initialization (j=1...N) S, (0)=7.e.(x,)
Recursion (i=1...L)

fs‘ (1) = €; (x;) II]E;CIX (fei— 1)“@):
pﬁ}(f) - argmgx (fe(i— l)akj)'




Problem 3. Model parameter estimation

See

® Rabiner, L.(1989) A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77 (2) 257-
286

® Rabiner, L., and Juang, Biing-Hwang, (1993),
Fundamentals of Speech Recognition, Prentice
Hall.
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Gene Structure prediction with HMM

Initial Internal

Exon Exon Terminal

Exon
Intron

‘ \ATG (54 \ ‘
5'UTR AG TAA 3'UTR
TAG
TGA

A gene is a highly structured region of DNA, it is a functional unit of inheritance.

27



60000 70000 80000 90000 100000
LI T T T T T T T T T 1T 7T 1 T T T [ |
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Gene Prediction Model

-’:‘;EXO”:H; { Exon) | ’;Exon’h&?

HMM (27 states)

Each state
 For a gene structure
State-specific models
(Generalized HMM)
 Length distribution

e Sequence content

29



Pair HMM for local alignment

30



