

Chapter 6 Hidden Markov Models

Chaochun Wei Spring 2019

Contents

- Reading materials
- Introduction to Hidden Markov Model
 - Markov chains
 - Hidden Markov Models
 - Parameter estimation for HMMs

- Rabiner, L.(1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993), Fundamentals of Speech Recognition, Prentice Hall.

Markov chain: a process that the current state depends on at most a limited number of previous states

- Weather
 - Sunny, Rain, Rain, Sunny, Cloudy, Cloudy,....
- Stock market index
 - Up, up, down, down, up, up, up,
- Girl/Boy friend's mood
 - High, low, low, high, high, ...
- Genome sequence
 - ATGTTAGATATAACAGATAA
- Flip coins
 - HTTTHHHHHHH

Hidden Markov Model

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$\pi^* = \arg\max_{\tau} P(x, \pi)$$

Hidden Markov Model

Elements of an HMM (N, M, A, B, Init)

- 1. N: number of states in the model
 - $S=\{S_1, S_2, ..., S_N\}$, and the state at time t is q_t .
- 2. M: alphabet size (the number of observation symbols)
 - $V = \{v_1, v_2, ..., v_M\}$
- 3. A: state transition probability distribution
 - A= $\{a_{ij}\}$ where $a_{ij}=P[q_{t+1}=S_j|q_t=S_i], 1 \le i,j \le N$
- 4. E: emission probability
 - E= $\{e_j(k)\}$ (observation symbols probability distribution in state j), where $e_i(k)=P[v_k \text{ at } t \mid q_t=S_i\}$, $1 \le i \le N$, $1 \le k \le M$
- 5. Init: initial state probability
 - Init= $\{I_i\}$, where $I_i=P[q_1=S_i]$, $1 \le i \le N$.

- HMM can be used as a generator to produce an observation sequence O=O₁O₂...O_T, where each O_t is one of the symbols from V, and T is the number of observations in the sequence.
 - 1. Choose an initial state $q_1=S_i$ according to Init;
 - 2. Set t=1;
 - 3. Choose $O_t=v_k$ according to $e_i(k)$ (the symbol probability distribution in state S_i);
 - 4. Transit to a new state $q_{t+1}=S_j$ according to a_{ij} ;
 - 5. Set t=t+1; return to step 3 if t<T; otherwise terminate the procedure.

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$P(x,\pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}^8} e_{\pi_{i+1}}(x(i)))$$

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221 Hidden state sequence \mathcal{T}

$$P(x, \pi \mid \lambda) = ?$$

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221 Hidden state sequence \mathcal{T}

$$P(x,\pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i))$$

$$= 1 * e_1(T) * (a_{11}e_1(T)) * (a_{12}e_2(H)) * (a_{22}e_2(H)) * (a_{21}e_1(T))$$

$$= 1 * 0.2 * (0.9 * 0.2) * (0.1 * 0.3) * (0.2 * 0.3) * (0.7 * 0.2)$$

Hidden Markov Model

 \oplus HMM: $\lambda = \{A, B, Init\}$

Three basic problems for HMMs

- 1. Given the observation sequence $O=O_1O_2...O_T$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O|\lambda)$?
- 2. Given the observation sequence $O=O_1O_2...O_T$, and a model $\lambda=\{A, B, Init\}$, how to choose a corresponding state sequence $Q=q_1q_2...q_T$, which is optimal in some meaningful sense..
- 3. How to estimate model parameters $\lambda = \{A, B, Init\}$ to maximize $P(O|\lambda)$.

Hidden Markov Model

- Three basic problems for HMMs
 - From the observation sequence and the model to a joint probability;
 - 2. Find the best hidden state sequence;
 - 3. Optimize the model parameters;

Most Probable Path and Viterbi Algorithm

Let
$$f_l(i) = \max_{\{\pi_0, ..., \pi_{i-1}\}} (\Pr(x_0, ..., x_{i-1}, x_i, \pi_0, ..., \pi_{i-1}, \pi_i = l))$$

Recursion (i=1...L)

$$f_l(i) = e_l(x_i) \max_k (f_k(i-1)a_{kl});$$

 $ptr_i(l) = \arg\max_k (f_k(i-1)a_{kl}).$

Time complexity $O(N^2L)$ space complexity O(NL)Solution to problem 2: prob of best state sequence Viterbi for the HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221	Hidden Sta	te sequence		
Т	Т	Н	Н	T
0	1	2	3	4

0	1	2	3	4

Viterbi for the HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

Probability of All the Possible Paths and Forward Algorithm

Let
$$f_l(i) = \Pr(x_0, ..., x_i, \pi_i = l)$$

Initialization (i=1...L)
$$f_0(i) = \pi_i e_i(x_0)$$

Recursion (i=1...L)
$$f_l(i) = e_l(x_i) \sum_{k} (f_k(i-1)a_{kl})$$

Probability of all the probable paths $P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} f_{k}(L)$ Solution to problem 1

7 SERVICE OF THE SERV

Posterior Probability and Forward and Backward Algorithm

Posterior Probability

$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

Backward Algorithm

Let
$$b_{k}(i) = Pr(x_{i+1}, x_{i+2}, ..., x_{L}, \pi_{i} = k)$$

$$b_L(i) = 1, \qquad 1 \le i \le N$$

$$b_{l}(i) = \sum_{k} (a_{lk}e_{k}(x_{i}))b_{l+1}(i),$$

$$l = L - 1, L - 2, ..., 0; 1 \le i \le N$$

Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} b_{k}(0)$$

Optimize the model parameters

- \oplus HMM: $\lambda = \{A, B, Init\}$
- With annotations
 - Maximum likely-hood
- Without annotations
 - EM algorithm

Optimize the model parameters

B HMM: $\lambda = \{A, B, Init\}$, Without annotations

Baum-Welch method (EM method)

Let
$$\xi_l(i, j) = P(\pi_l = i, \pi_{l+1} = j \mid x, \lambda)$$

then
$$\xi_l(i,j) = \frac{f_l(i)a_{ij}e_j(x_{l+1})b_{l+1}(j)}{\sum\limits_{i}^{N}\sum\limits_{j}(f_l(i)a_{ij}e_j(x_{l+1})b_{l+1}(j))}$$

Let
$$\gamma_l(i) = \sum\limits_{j=1}^N \xi_l(i,j)$$

then
$$\sum_{l=0}^{N} \gamma_l(i)$$
 = expected number of transitions from S_i

$$\sum_{l=0}^{N} \xi_l(i,j) = \text{expected number of transition } S_i \text{ to } S_j$$

Optimize the model parameters (2)

HMM: λ={A, B, Init}, Without annotations
 Baum-Welch method (EM method)

Then, $\overline{Init}_i = \text{ expected frequency in } S_i \text{ at time } 0 = \gamma_0(i)$

$$\frac{1}{a_{i,j}} = \frac{\exp{ected} \text{ number of tranistions from } S_i \text{ to } S_j}{\exp{ected} \text{ number of tranistions from } S_i} = \frac{\sum\limits_{l=0}^{L-1} \xi_l(i,j)}{\sum\limits_{l=0}^{L-1} \gamma_l(i)}$$

$$\frac{1}{e_i(k)} = \frac{\exp{ected} \quad number \quad of \quad times \quad in \quad state \quad i \quad and \ observing \quad symbol \quad v_k}{\exp{ected} \quad number \quad of \quad times \quad in \quad state \quad i} = \frac{\sum\limits_{l=0}^{L} \gamma_l(i)}{\sum\limits_{l=0}^{L} \gamma_l(i)}$$

One more example:

Flipping two coins

Θ O= HHTHHTTTHT, P(O|λ)=?

Problem 1: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O \mid \lambda)$, the probability of the observation sequence given the model?

Forward Algorithms

	н	н	T	н	н	Т	Т	Т	н	Т	Emæd
A	0.45	0.181	0.073 42	0.031 44	0.013 06	0.053 71	0.023 45	0.001 11	5.817 e-4	2.580 e-4	2.42
В	0.02	0.0205	0.041 45	0.009 83	0.002 86	0.003 94	0.003 49	0.002 73	5.067 e-4	4.329 e-4	3e-5

Let
$$f_i(i) = \Pr(x_0, ..., x_i, \pi_i = j)$$

Initialization (j=1...N) $f_j(0) = \pi_j e_j(x_0)$

Recursion (i=1...L;
$$f_j(i) = e_j(x_i) \sum_k (f_k(i-1)a_{kj})$$

 $j = 1, ..., N$)

Probability of all the probable paths

$$P(x) = \sum_{k} P(x, \pi) = \sum_{k} f_k(L)$$

H: 0.5

T: 0.5

23

Coin

H: 0.2

T: 0.8

Coin

Α

- O= HHTHHTTTHT
- argmax(P(O, Q, λ))

Problem 2: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to choose a corresponding state sequence $Q=q_1q_2...q_7$, which is optimal in some meaningful sense..

SE AND TO NOT THE PARTY OF THE

Viterbi Algorithms

A -> A -> A -> A -> B -> B -> B -> B

	Н	Н	T	H	Н	T	T	T	Н	T	Ermadl
A	0.45	0.18	0.072	0.028 8	0.011 5	0.004 6	1.843 e-3	7.372 e-4	2.949 e-4	1.180 e-4	4.68
В	0.02	0.01 71	0.027 4	4.652 e-3	1.109 e-3	1.751 e-3	1.191 e-3	8.097 e-4	1.376 e-4	9.360 e-5	

Let
$$f_{j}(i) = \max_{\{\pi_{0},...,\pi_{i-1}\}} (\Pr(x_{0},...,x_{i-1},x_{i},\pi_{0},...,\pi_{i-1},\pi_{i}=j))$$

Initialization (j=1...N)
$$f_j(0) = \pi_j e_j(x_0)$$

Recursion (i=1...L)

$$f_{j}(i) = e_{j}(x_{i}) \max_{k} (f_{k}(i-1)a_{kj});$$

 $ptr_{j}(i) = \arg\max_{k} (f_{k}(i-1)a_{kj}).$

Problem 3. Model parameter estimation

See

- Rabiner, L.(1989) A Tutorial on Hidden Markov
 Models and Selected Applications in Speech
 Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993),
 Fundamentals of Speech Recognition, Prentice Hall.

Gene Structure prediction with HMM

A gene is a highly structured region of DNA, it is a functional unit of inheritance.

A Typical Human Gene Structure

Gene Prediction Model

- HMM (27 states)
- Each state
 - For a gene structure
- State-specific models (Generalized HMM)
 - Length distribution
 - Sequence content

Another example: Pair HMM for local alignment

