
Course organization
• Course introduction (Week 1)

• Code editor: Emacs （Week 2）
• Part I: Introduction to C programming language (Week 3 - 12)

• Chapter 1: Overall Introduction (Week 3-4)

• Chapter 2: Types, operators and expressions (Week 5)

• Chapter 3: Control flow (Week 6)

• Chapter 4: Functions and program structure (Week 7)

• Chapter 5: Pointers and arrays (Week 8)

• Chapter 6: Structures (Week 10)

• Chapter 7: Input and Output (Week 11)

• Part II: Skills others than programming languages (Week 12)

• Debugging tools（Week 12）

• Part III: Reports from the battle field (student forum) (Week 13– 16)

• Presentation (week 13-14)

• Demo (week 15-16)

1

1896 1920 1987 2006

Chapter 7 Input and Output

Chaochun Wei

Shanghai Jiao Tong University

Spring 2019

Contents

7.1 Standard input and output

7.2 Formatted output -- printf

7.3 Variable-length argument lists

7.4 Formatted input -- scanf

7.5 File access

7.6 Error handling -- Stderr and Exit

7.7 Line input and output

7.8 Miscellaneous Functions

Input and output

Not part of the C language itself

They are part of the standard library functions of C

• Standard library functions include

• Input, output

• string handling,

• storage management

• Mathematical routines

• …

• They are specified in header files, including

• <stdio.h>

• <string.h>

• <ctype.h>

7.1 Standard input and output

Input

• Read from standard input (keyboard)

• Read characters from a file called infile.

• Take input from other program otherprog

prog < infile

int getchar(void)

Otherprog | prog

7.1 Standard input and output

Output

• output to standard output (screen)

• Output to a file outfile

• Output to other program otherprog

Prog > outfile

int putchar(int)

prog | anotherprog

More details see hands-on example 7.1

7.2 Formatted output --printf

printf

• syntax of printf

• Format string

• Normal characters

• Conversion characters (begins with a %)

• A width or precision may be specified as *

• E.g. , to print at most max characters from a string s:

int printf(char *format, arg1, arg2, …)

printf(“%.*s”, max, s);

More details see hands-on example 7.2 string

7.2 Formatted output --printf

Format number (%)
Character Argument type; printed as

d, i Int; decimal number.

o Unsigned int; unsigned octal number (without a leading zero)

X, x Unsigned int; unsigned hexadecima number (without a leading 0x

or 0X), using abcdef or ABCDEF for 10,11, 12, 13, 14 and 15.

u Unsigned int; unsigned decimal number

c Int; single character.

s Char *; print a string, until a ‘\0’ or the number of characters given

by the precision

f Double; [-]m.dddddd, where the number of d’s is given by the

precision (default 6)

e, E Double; [-]m.dddddd e±xx or [-]m.dddddd E±xx, where the

number of d’s is given by the precision (default is 6)

p Void *; pointer (implementation-dependent representation)

% No argument is converted; print a %

See hands-on example 7.2 number

7.3 Variable-length argument lists

The declaration for printf is

int printf(char *fmt, …)

the declaration … means variable-length argument list.

… can only appear at the end of an argument list.

More details see hands-on example 7.3

7.4 Formatted input --scanf

Scanf:

• read characters from the standard input

• Interpret them according to the format string

• Store the results in the remaining arguments

syntax of scanf, sscanf

Format string

• Blanks or tabs, which are ignored

• Normal characters (not %)

• Conversion characters (begins with a %)

int scanf(char *format, …)

Int sscanf(char *string, char *format, arg1, arg2, …)

7.4 Formatted input --scanf

Format string (%)
Character Input data; argument type

d decimal integer; int *

i Integer; int *. The integer may be in octal (leading 0) or hexadecimal

(leading 0x or 0X)

o Octal integer(with or without a leading zero); unsigned int *

U unsigned decimal integer; unsigned int *

x Hexadecimal integer (with or without leading 0x or 0X); unsigned int *

c Characters; char *. The next input characters (default 1) are placed at

the indicated spot. The normal skip over white space is suppressed; to

read the next non-white space character, use %1s.

s Character string (not quoted); char *, pointing to an array of characters

large enough for the string and a terminating ‘\0’ that will be added

e,f,g Floating-point number with optional sign, optional decimal point and

optional exponent; float *

% No argument is converted; print a %

7.4 Formatted input --scanf

The arguments must be pointers in scanf,

sscanf

int scanf(char *format, arg1, arg2, …)

Int sscanf(char *string, char *format, arg1, arg2, …)

More details see hands-on example 7.4

7.5 File access

Read, write, append

Open a file

FILE *fp;

FILE *fopen(char *name, char *mode);

Mode

“r”: read

“w”: write

“a”: append

“b”: binary files

7.5 File access

Open a file

FILE *fp;

FILE *fopen(char *name, char *mode);

• Read

• If a file does not exist, it’s an error

• Write

• If a file does not exist, it will be created

• If a file exits, the old content will be discarded

• Append

• If a file exits, the old content will be preserved

If there is an error, fopen returns NULL.

7.5 File access

After a file is open

• Read the next character from a file

• int getc (FILE *fp);

• Write a character t o a file

• int putc (int c, FILE *fp);

Close a file after the file access is over

• int fclose(FILE *fp);

See more details in hands-on experiment 7.5

7.5 File access

Formatted input or output of files

See more details in hands-on experiment 7.6

int fscanf(FILE *fp, char *format, …)

int fprintf(FILE *fp, char *format, …)

7.6 Error handling – stderr and exit

When a file can’t be accessed for some reasons

• Stderr: Output the error message on the screen

• Exit: Terminate the program (exit the program)

• Terminate the program

• Close all open output files and

• Flush out buffered output

See more details in hands-on experiment 7.6

7.7 Line input and output

Line input

• char *fgets(char *line, int maxline,

FILE *fp);

Reads the next input line from file fp into line; at

most maxline – 1 characters will be read

Line output

• int fputs(char *line, FILE *fp);

Writes a string to a file

7.8 Miscellaneous Functions

String operations : <string.h>

• strcat(s, t) concatenate t to end of s

• strncat(s, t, n) concatenate n characters of t to end of s

• strcmp(s, t) return negative, zero, or positive for

s < t, s == t, or s > t

• strncmp(s, t, n) same as strcmp but only in first n chars

• strcpy(s, t) copy t to s

• strncpy(s, t, n) copy at most n characters of t to s

• strlen(s) return length of s

• strchr(s, c) return pointer to first c in s, or NULL if not present

• strrchr(s, c) return pointer to last c in s, or NULL if not present

7.8 Miscellaneous Functions

Character class testing and conversion

• isalpha(c) non-zero if c is alphabetic, 0 if not

• isupper(c) non-zero if c is upper case, 0 if not

• islower(c) non-zero if c is lower case, 0 if not

• isdigit(c) non-zero if c is digit, 0 if not

• isalnum(c) non-zero if isalpha(c) or isdigit(c), 0 if not

• isspace(c) non-zero if c is blank, tab, newline, return

• toupper(c) return c converted to upper case

• tolower(c) return c converted to lower case

7.8 Miscellaneous Functions

Ungetc

• int ungetc(int c, FILE *fp);

Pushes the character c back into file fp, and returns

either c, or EOF for an error.

7.8 Miscellaneous Functions

Command execution

system(char *s);

Executes the command contained in string s.

Returns the exit value of command s.

7.8 Miscellaneous Functions

Storage management

• void *malloc(size_t n);

• Returns a pointer to n bytes of uninitialized storage,

or NULL if the request can not be satisfied

• void *calloc (size_t n, size_t size)

• Returns a pointer to an array of n objects of the

specified size, or NULL if failed.

• void *realloc(void *p, size_t size);

• Changes the size of the object pointed by p to size.

Returns a pointer to the new space or NULL if the

request can not be satisfied, in which case *p is

unchanged

More details see hands-on experiment 7.8

7.8 Miscellaneous Functions

Storage management

• Type conversion: convert to proper type

• free(p): frees the space pointed to by p, which is

obtained by a call to malloc, calloc or realloc

int *ip;

ip = (int *) calloc (n, sizeof (int));

More details see hands-on experiment 7.8

