Course organization

"+ Course introduction (Week 1)

« Code editor: Emacs (Week 2)
Part I: Introduction to C programming language (Week 3 - 12)

Chapter 1: Overall Introduction (Week 3-4)

Chapter 2: Types, operators and expressions (Week 5)
Chapter 3: Control flow (Week 6)

Chapter 4: Functions and program structure (Week 7)
Chapter 5: Pointers and arrays (Week 8)

Chapter 6: Structures (Week 10)

Chapter 7: Input and Output (Week 11)

Part Il: Skills others than programming languages (Week 12- 13)

Debugging tools (Week 12)
Keeping projects documented and manageable (Week 13)
Source code managing (Week 13)

Part Ill: Reports from the battle field (student forum) (Week 14— 16)

Presentation (week 14-15)
Demo (week 16)

) \ - p N
'%) .5 -'t ﬁi ﬁx {%

<,
NSy’ SHANGHAI JIAO TONG UNIVERSITY

Chapter 5. Pointers and Arrays

Chaochun Wei
Shanghai Jiao Tong University
Spring 2019

® ® ® & ® &® &® @& e @ @

&

Contents
5.1 Pointers and addresses
5.2 Pointers and function arguments
5.3 Pointers and arrays
5.4 Address arithmetic
5.5 Character pointers and functions
5.6 Pointer arrays, pointers to pointers
5.7 Multi-dimensional arrays
5.8 Initialization of pointer arrays
5.9 Pointers vs. multi-dimensional arrays

5.10 Command-line arguments

5.1 Pointers and address

For any type T, you may form a pointer type to T.
 Pointers may reference a function or an object.

« The value of a pointer is the address of the corresponding object or
function

« Examples: int *i; char *x; int (*myfunc) ();
Pointer operators: * dereferences a pointer, & creates a pointer
(reference to)
e int i = 3; int *j
*J = 4; printf (™1

&i;
$d\n”, i); // prints i

4

e int myfunc (int arg);
int (*fptr) (int) = myfunc;
i = fptr(4); // same as calling myfunc(4);
Generic pointers:
« Traditional C used (char *)
« Standard C uses (void *) —these can not be dereferenced or used in
pointer arithmetic. So they help to reduce programming errors

Null pointers: use NULL or O. It is a good idea to always initialize
pointers to NULL.

5.1 Pointers and address

Program Memory Address

Step 1:

int main (int argc, argv) {

int x = 4; X 4 0x3dc

: * _] y 0x3dc 0x3d8

int y = &X; A O34
NA 0x3d0
NA Ox3cc
NA 0x3c8
NA O0x3c4
NA 0x3c0
NA 0x3bc
NA 0x3b8
NA 0x3b4
NA 0x3b0

Eg: chpt5.1_pointers.c

5.1 Pointers and address

Eg: chpt5.1 pointers_1.c

More example operations on pointers
intx =1,y =2;
Int *ip;
Ip = &X; /[*ip points to x */
y="p; Fy=1; %
*Ip = *ip + 10; /* equivalent to x = x + 10; */
y=*Ip +1; /* note the difference with *ip +=1*/

++ *Ip; /* similar to *ip +=1 and (*ip) ++ */

(See more details in hands-on experiment 5.1)

5.2 Pointers and function arguments

Arguments are passed to functions by value.

/* function to swap the values of two variable */

Inta=1,b=2;

inta=1,b=2; swap(&a, &b);

swap(a, b);

el
void swap (int x, int y) { void swap (int *X, int *y) {

Int temp; int temp;

temp = Xx; temp = *x;

X = *X = *y;

y = temp; *y = temp;
} }

More details see hands-on experiment 5.2

5.3 Arrays and Pointers

A variable declared as an array represents a contiguous
region of memory in which the array elements are stored.
int x[5]; // an array of 5 4-byte ints.

All arrays begin with an index of O

O, N WM

memory layout for array x

An array identifier is equivalent to a pointer that
references the first element of the array

e int x[5], *ptr;
ptr = &x[0] is equivalentto ptr = x;

Pointer arithmetic and arrays:

e int x[5];
x[2] isthesameas *(x + 2),the compiler will assume you
mean 2 objects beyond element x.

5.3 Arrays and pointers (continued I)

Program Memory Address

Step 1:
int main (int argc, argv) {
int x = 4;
int *y = &x; X 4 Ox3dc
int *z[4] = {NULL, NULL, NULL, NULL}; Y 0x3dc 0x3d8
int a[4] = {1, 2, 3, 4}; NA 0x3d4
NA 0x3d0
z[3] 0 0x3cc
z[2] 0 0x3c8
Note: The compiler converts z[1] or *(z+1) to Z[1] 0 0x3c4
Value at address (Address of z + sizeof(int)); z[0] 0 0x3c0
a[3] 4 0x3bc
In C you would write the byte address as: a[2] 3 0x3b8
(char *)z + sizeof (int);
a[1] 2 0x3b4
or letting the compiler do the work for you al0] 1 0x3h0
(int *)z + 1;

int main

int
int *

int *z[4] =

int
Step 2:
z[0]
z[1]
z[2]
z[3]

X
Y

a

5.3 Arrays and pointers (Continued II)

NULL};

(1nt argc, argv) {

= 4:

= &X;

(NULL, NULL, NULL,

(41 = {1, 2, 3, 4};
Assign addresses to array 7%
a; // same as &al[0];
a+1l; // same as &al[l]l;
a+ 2; // same as &al[2];
a+ 3; // same as &al[3];

More details see hands-on experiment 5.3

z| 3]
z[2]
z[1]
z[0]
a[3]
a[2]
a[1]
a[0]

Program Memory Address

Ox3dc

NA

NA

Ox3bc

0x3b8

0x3b4

0x3b0

R IN W

0x3dc
0x3d8
0x3d4
0x3d0

0x3cc
0x3c8
0x3c4
0x3c0
0x3bc
0x3b8
0x3b4
0x3b0

5.4 Address arithmetic

Pointers can do arithmetic operation
o + - ++
e ==, 1= <, >, >= etC
Example: let p, and g be two pointers to an
array
° pt++
« p+=1
*pP<q
* p+n /[*nextnobjectp points to */

See hands-on experiment 5.4 for more details

5.5 Character pointers and functions

String constant: an array of characters,
ending with \0’
char *pmessage = ‘now is the time’;

[* The pointer to the character array is
assigned to pmessage. */

char amessage[] = “now is the time” ; /* an array */

pmessage. n now is the time\0
amessage. now is the time\0

5.5 Character pointers and functions

Assignment: Is not a string copy operation
char *s = “this is a string”, *t;
t=s; /*thisis not a string copy */
/* this copies to t the address that s points to */

To copy a string, we need a loop
[* strcpy: copy tto s */
void strcpy(char *s, char *t) {
while ((*s++ = *t++) I=0)) ;
}

See hands-on experiment 5.5 for more details.

5.6 Pointer arrays; pointers to pointers

Pointers are variables

e can be stored in arrays

Example: student name list: a 2 dimension
array, which can be a pointer array;

Pointer array char* name

Bei Zeng\0
Yun Jiang\O
Xin Jia\0

Sort :

More details in hands-on experiments 5.6

Bei Zeng\O
Yun Jiang\O

Xin Jia\O

5.7 Multi-dimensional arrays

Array of pointers

* flexible

Multi-dimensional arrays

 Rectanglar, therefore inflexible

5.9 Pointers vs. multi-dimensional arrays

Definition:
Int a[10][20];
Int *b[10];
The size of ais 10*20 = 200

The size of b 1s flexible.

The following two expressions are both legal.
a[3][4];
b[3][4];

5.10 Command-line arguments

main function has two arguments
 Argc: argument count

 Argv: argument vector

Example |
[* echo command-line arguments */

main(int argc, char *argv]]) {
Int I
for (i=1;i<argc;i++)
printf("%s%s", argv[i], (i <argc -1) 2 " " ");
printf("\n");
return O;

}

See hands-on experiment 5.10 for more details.

