
Course organization 
• Course introduction ( Week 1)

• Code editor: Emacs （Week 2）
• Part I: Introduction to C programming language (Week 3 - 12)

• Chapter 1: Overall Introduction (Week 3-4)

• Chapter 2: Types, operators and expressions (Week 5)

• Chapter 3: Control flow (Week 6)

• Chapter 4: Functions and program structure (Week 7)

• Chapter 5: Pointers and arrays (Week 8)

• Chapter 6: Structures (Week 10)

• Chapter 7: Input and Output (Week 11)

• Part II: Skills others than programming languages (Week 12- 13)

• Debugging tools（Week 12）

• Keeping projects documented and manageable （Week 13）

• Source code managing （Week 13）

• Part III: Reports from the battle field (student forum) (Week 14– 16)

• Presentation (week 14-15)

• Demo (week 16)1
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5.1 Pointers and address

For any type T, you may form a pointer type to T. 

• Pointers may reference a function or an object.

• The value of a pointer is the address of the corresponding object or 
function

• Examples: int *i; char *x; int (*myfunc)();

Pointer operators: * dereferences a pointer, & creates a pointer 
(reference to)
• int i = 3; int *j = &i;

*j = 4; printf(“i = %d\n”, i); // prints i = 4

• int myfunc (int arg);

int (*fptr)(int) = myfunc; 

i = fptr(4); // same as calling myfunc(4);

Generic pointers:

• Traditional C used (char *)

• Standard C uses (void *) – these can not be dereferenced or used in 
pointer arithmetic. So they help to reduce programming errors

Null pointers: use NULL or 0. It is a good idea to always initialize 
pointers to NULL.



5.1 Pointers and address

Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

0x3c4

0x3c0

Step 1:

int main (int argc, argv) {

int  x = 4;

int * y = &x;

...

0x3bc

0x3b8

0x3b4

0x3b0

0x3d4

0x3d0

4

0x3dc

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

x
y

Eg：chpt5.1_pointers.c



5.1 Pointers and address

More example operations on pointers

int x = 1, y = 2; 

int *ip; 

ip = &x;  /* ip points to x */

y = *ip; /* y = 1;  */ 

*ip = *ip + 10; /* equivalent to x = x + 10; */ 

y= *ip +1; /* note the difference with *ip += 1 */ 

++ *ip; /* similar to *ip += 1  and (*ip) ++ */  

(See more details in hands-on experiment 5.1)

Eg：chpt5.1_pointers_1.c



5.2 Pointers and function arguments

Arguments are passed to functions by value.

/* function to swap the values of two variable */

int a = 1, b = 2; 

swap(a, b); 

void swap (int x, int y) {

int temp;

temp = x;

x = y;

y = temp;

}

WRONG!!!

int a = 1, b = 2; 

swap(&a, &b); 

void swap (int *x, int *y) {

int temp;

temp = *x;

*x = *y;

*y = temp;

}

More details see hands-on experiment 5.2 



5.3 Arrays and Pointers
A variable declared as an array represents a contiguous 

region of memory in which the array elements are stored.

int x[5]; // an array of 5 4-byte ints.

All arrays begin with an index of 0

An array identifier is equivalent to a pointer that 

references the first element of the array

• int x[5], *ptr;

ptr = &x[0] is equivalent to ptr = x;

Pointer arithmetic and arrays: 

• int x[5];

x[2] is the same as *(x + 2), the compiler will assume you 

mean 2 objects beyond element x.
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memory layout for array x



5.3 Arrays and pointers (continued I)

Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

0x3c4

0x3c0

Note: The compiler converts z[1] or *(z+1) to

Value at address (Address of z + sizeof(int));

In C you would write the byte address as:
(char *)z + sizeof(int);

or letting the compiler do the work for you
(int *)z + 1;

Step 1:

int main (int argc, argv) {

int  x = 4;

int *y = &x;

int *z[4] = {NULL, NULL, NULL, NULL};

int  a[4] = {1, 2, 3, 4};

...

0x3bc

0x3b8

0x3b4

0x3b0

0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

4

0x3dc

0

0

0

0

4

3

2

1

NA

NA

x

y



5.3 Arrays and pointers (Continued II)

4

0x3dc

Address

0x3dc

0x3d8

Program Memory

0x3bc

0x3b8

0x3b4

0x3b0

0x3cc

0x3c8

0x3c4

0x3c0

Step 1:

int main (int argc, argv) {

int  x = 4;

int *y = &x;

int *z[4] = {NULL, NULL, NULL, NULL};

int  a[4] = {1, 2, 3, 4};

Step 2: Assign addresses to array Z

z[0] = a; // same as &a[0];

z[1] = a + 1; // same as &a[1];

z[2] = a + 2; // same as &a[2];

z[3] = a + 3; // same as &a[3];

0x3bc

0x3b8

0x3b4

0x3b0

4

3

2

1

NA 0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

NA

x

y

More details see hands-on experiment 5.3 



5.4 Address arithmetic

Pointers can do arithmetic operation

• +, - , ++

• ==, !=, <, >, >=, etc

Example: let p, and q be two pointers to an 

array

• p++

• p+= 1

• p < q

• p + n      /* next n object p points to */

See hands-on experiment 5.4 for more details



5.5 Character pointers and functions

String constant: an array of characters, 

ending with ‘\0’

char *pmessage = “now is the time”; 

/* The pointer to the character array is 

assigned to pmessage. */ 

char amessage[ ] = “now is the time”; /* an array */

pmessage: now is the time\0

amessage: now is the time\0



5.5 Character pointers and functions

Assignment: is not a string copy operation

char *s = “this is a string”, *t; 

t = s ;  /* this is not a string copy */

/* this copies to t the address that s points to */ 

To copy a string, we need a loop

/* strcpy: copy t to s */ 

void strcpy(char *s, char *t) {

while (( *s++ = *t++) != ‘\0’) ; 

}

See hands-on experiment 5.5 for more details. 



5.6 Pointer arrays; pointers to pointers 

Pointers are variables

• can be stored in arrays

Example: student name list: a 2 dimension 

array, which can be a pointer array; 

Bei Zeng\0

Yun Jiang\0

Xin Jia\0

Pointer array char* name

Bei Zeng\0

Yun Jiang\0

Xin Jia\0

Sort

More details in hands-on experiments 5.6



5.7 Multi-dimensional arrays

Array of pointers

• flexible

Multi-dimensional arrays

• Rectanglar, therefore inflexible



5.9 Pointers vs. multi-dimensional arrays

Definition: 

int a[10][20]; 

int *b[10]; 

The size of a is 10*20 = 200

The size of b is flexible.

The following two expressions are both legal.  

a[3][4]; 

b[3][4]; 



5.10 Command-line arguments

main function has two arguments

• Argc: argument count

• Argv: argument vector

Example
/* echo command-line arguments */

main(int argc, char *argv[ ]) {

int i;

for (i = 1; i < argc; i ++ )

printf("%s%s", argv[i], (i < argc -1) ? " ": "");

printf("\n");

return 0;

}

See hands-on experiment 5.10 for more details. 


