
Unix and Perl Primer
for Biologists

Keith Bradnam & Ian Korf
Version 2.3.4 - November 2009

Unix and Perl Primer for Biologists by Keith Bradnam & Ian Korf is licensed under a
Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Please
send feedback, questions, money, or abuse to krbradnam@ucdavis.edu or
ifkorf@ucdavis.edu. Copyright 2009, all rights reserved.

http://korflab.ucdavis.edu/Unix_and_Perl/
http://korflab.ucdavis.edu/Unix_and_Perl/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:krbradnam@ucdavis.edu
mailto:krbradnam@ucdavis.edu
mailto:ifkorf@ucdavis.edu
mailto:ifkorf@ucdavis.edu

Introduction
Advances in high-throughput biology have transformed modern biology into an
incredibly data-rich science. Biologists who never thought they needed computer
programming skills are now finding that using an Excel spreadsheet is simply not
enough. Learning to program a computer can be a daunting task, but it is also incredibly
worthwhile. You will not only improve your research, you will also open your mind to new
ways of thinking and have a lot of fun.

This course is designed for Biologists who want to learn how to program but never got
around to it. Programming, like language or math, comes more naturally to some than
others. But we all learn to read, write, add, subtract, etc., and we can all learn to
program. Programming, more than just about any other skill, comes in waves of
understanding. You will get stuck for a while and a little frustrated, but then suddenly
you will see how a new concept aggregates a lot of seemingly disconnected
information. And then you will embrace the new way, and never imagine going back to
the old way.

As you are learning, if you are getting confused and discouraged, slow down and ask
questions. You can contact us either in person, by email, or (preferably) on the
associated Unix and Perl for Biologists Google Group. The lessons build on each other,
so do not skip ahead thinking you will return to the confusing concept at a later date.

Why Unix?

The Unix operating system has been around since 1969. Back then there was no such
thing as a graphical user interface. You typed everything. It may seem archaic to use a
keyboard to issue commands today, but it's much easier to automate keyboard tasks
than mouse tasks. There are several variants of Unix (including Linux), though the
differences do not matter much. Though you may not have noticed it, Apple has been
using Unix as the underlying operating system on all of their computers since 2001.

Increasingly, the raw output of biological research exists as in silico data, usually in the
form of large text files. Unix is particularly suited to working with such files and has
several powerful (and flexible) commands that can process your data for you. The real
strength of learning Unix is that most of these commands can be combined in an almost
unlimited fashion. So if you can learn just five Unix commands, you will be able to do a
lot more than just five things.

Why Perl?

Perl is one of the most popular Unix programming languages. It doesn't matter much
which language you learn first because once you know how one works, it is much easier
to learn others. Among languages, there is often a distinction between interpreted (e.g.
Perl, Python, Ruby) and compiled (e.g. C, C++, Java) languages. People often call

Unix and Perl Primer for Biologists

2

http://groups.google.com/group/unix-and-perl-for-biologists
http://groups.google.com/group/unix-and-perl-for-biologists
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Linux

interpreted programs scripts. It is generally easier to learn programming in a scripting
language because you don't have to worry as much about variable types and memory
allocation. The downside is the interpreted programs often run much slower than
compiled ones (100-fold is common). But let's not get lost in petty details. Scripts are
programs, scripting is programming, and computers can solve problems quickly
regardless of the language.

Typeset Conventions

All of the Unix and Perl code in these guides is written in constant-width font with line
numbering. Here is an example with 3 lines.

1. for ($i = 0; $i < 10; $i++) {
2. print $i, "\n";
3. }

Text you are meant to type into a terminal is indented in constant-width font without
line numbering. Here is an example.

	 ls -lrh

Sometimes a paragraph will include a reference to a Unix, or will instruct you to type
something from within a Unix program. This text will be in underlined constant-width
font. E.g.

Type the pwd command again.

From time to time this documentation will contain web links to pages that will help you
find out more about certain Unix commands and Perl functions. Such links will appear in
a standard web link format and can be clicked to take you the relevant web page.

Important or critical points will be placed in text boxes like so:

This is an important point!

Unix and Perl Primer for Biologists

3

http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Hyperlink

About the authors

Keith Bradnam started out his academic career studying ecology. This involved lots of
field trips and and throwing quadrats around on windy hillsides. He was then lucky to be
in the right place at the right time to do a Masters degree in Bioinformatics (at a time
when nobody was very sure what bioinformatics was). From that point onwards he has
spent most of his waking life sat a keyboard (often staring into a Unix terminal). A PhD
studying eukaryotic genome evolution followed; this was made easier by the fact that
only one genome had been completed at the time he started (this soon changed). After
a brief stint working on an Arabidopsis genome database, he moved to working on the
excellent model organism database WormBase at the Wellcome Trust Sanger Institute.
It was here that he first met Ian Korf and they bonded over a shared love of Macs,
neatly written code, and English puddings. Ian then tried to run away and hide in
California at the UC Davis Genome Center but Keith tracked him down and joined his
lab. Apart from doing research, he also gets to look after all the computers in the lab
and teach the occasional class or two. However, he would give it all up for the chance
to be able to consistently beat Ian at foosball, but that seems unlikely to happen anytime
soon. Keith still likes Macs and neatly written code, but now has a much harder job
finding English puddings.

Ian Korf believes that you can tell what a person will do with their life by examining their
passions as a teen. Although he had no idea what a 'sequence analysis algorithm' was
at 16, a deep curiosity about biological mechanisms and an obsession with writing/
playing computer games is only a few bits away. Ian's first experience with
bioinformatics came as a post-doc at Washington University (St. Louis) where he was a
member of the Human Genome Project. He then went across the pond to the Sanger
Centre for another post-doc. There he met Keith Bradnam, and found someone who
truly understood the role of communication and presentation in science. Ian was
somehow able to persuade Keith to join his new lab in Davis California, and this primer
on Unix and Perl is but one of their hopefully useful contributions.

Unix and Perl Primer for Biologists

4

http://en.wikipedia.org/wiki/Quadrat
http://en.wikipedia.org/wiki/Quadrat
http://www.wormbase.org/
http://www.wormbase.org/
http://www.genomecenter.ucdavis.edu/
http://www.genomecenter.ucdavis.edu/

Preamble! 13

What computers can run Perl?! 13

What computers can run Unix?! 13

Do I need to run this course from a USB drive?! 14

Unix Part 1! 15
Learning the essentials ! 15

Introduction to Unix! 15

U1. The Terminal! 15

U2. Your first Unix command! 17

U3: The Unix tree! 18

U4: Finding out where you are! 19

U5: Getting from ʻAʼ to ʻBʼ! 19

U6: Root is the root of all evil! 20

U7: Up, up, and away! 20

U8: Iʼm absolutely sure that this is all relative! 21

U9: Time to go home! 21

U10: Making the ʻlsʼ command more useful! 22

U11: Man your battle stations!! 23

U12: Make directories, not war! 23

Unix and Perl Primer for Biologists

5

U13: Time to tidy up! 24

U14: The art of typing less to do more! 24

U15: U can touch this! 25

U16: Moving heaven and earth! 25

U17: Renaming files! 26

U18: Stay on target ! 26

U19: Here, there, and everywhere! 27

U20: To slash or not to slash?! 27

U21: The most dangerous Unix command you will
ever learn!! 28

U22: Go forth and multiply! 29

U23: Going deeper and deeper! 30

U24: When things go wrong! 30

U25: Less is more! 31

U26: Directory enquiries! 31

U27: Fire the editor! 32

U28: Hidden treasure! 33

U29: Sticking to the script ! 34

U30: Keep to the $PATH! 35

Unix and Perl Primer for Biologists

6

U31: Ask for permission! 35

U32: The power of shell scripts! 36

Unix Part 2! 38
How to Become a Unix power user! 38

U33: Match making! 38

U34: Your first ever Unix pipe! 39

U35: Heads and tails! 40

U36: Getting fancy with regular expressions! 41

U37: Counting with grep! 42

U38: Regular expressions in less! 42

U39: Let me transl(iter)ate that for you! 43

U40: Thatʼs what she sed! 43

U41: Word up! 44

U42: GFF and the art of redirection! 44

U43: Not just a pipe dream! 45

U44: The end of the line! 46

U45: This one goes to 11! 47

Summary! 49

Perl! 50

Unix and Perl Primer for Biologists

7

Your programming environment ! 50

Saving Perl scripts! 51

P1. Hello World! 53

P2. Scalar variables! 54

Variables summary! 56

P3. Safer programming: use strict ! 57

P4. Math! 59

Operator Precedence! 61

P5. Conditional statements! 62

Numerical comparison operators in Perl! 62

Indentation and block structure! 62

Whitespace! 63

Other Conditional Constructs! 64

Numeric Precision and Conditionals! 65

P6. String operators! 66

String comparison operators in Perl! 66

Matching Operators! 67

Matching operators in Perl! 68

The transliteration operator! 69

Unix and Perl Primer for Biologists

8

Project 1: DNA composition! 71

Program Name! 71

Executable! 71

Usage Statement ! 71

Goals of your program! 72

P7. List context ! 73

P8. Safer programming: use warnings! 74

P9. Arrays! 75

Making arrays bigger and smaller! 77

Common Array Functions! 78

P10. From strings to arrays and back! 80

P11. Sorting! 81

P12. Loops! 83

The for Loop! 83

The foreach Loop! 86

The while Loop! 86

The do Loop! 87

Loop Control! 88

When to use each type of loop?! 89

Unix and Perl Primer for Biologists

9

Project 2: Descriptive statistics! 90

Count, Sum, and Mean! 90

Min, Max, and Median! 90

Variance! 90

Standard Deviation! 90

Project 3: Sequence shuffler! 91

Strategy 1! 91

Strategy 2! 91

P13. File I/O! 92

The default variable $_! 92

The open() Function! 93

Naming file handles! 94

P14. Hashes! 95

Keys and Values! 96

Adding, Removing, and Testing! 96

Hash names! 97

P15. Organizing with hashes! 98

P16. Counting codons with substr()! 99

P17. Regular expressions 101! 101

Unix and Perl Primer for Biologists

10

Anchors! 103

Repetition! 103

Backslash! 104

The full set of Perl regular expression characters!104

P18. Extracting text ! 105

More Info! 106

P19. Boolean logic! 107

Project 4: Codon usage of a GenBank file! 108

P20. Functions (subroutines)! 109

Why use subroutines?! 113

P21. Lexical variables and scope! 114

Loop Variables! 116

Safer programming: use strict ! 116

P22. Sliding window algorithms! 117

P23. Function libraries! 119

Project 5: Useful functions! 121

P25. Options processing! 124

P26. References and complex data structures! 126

Multi-dimensional Arrays! 126

Unix and Perl Primer for Biologists

11

References! 126

Anonymous Data! 127

Records! 128

What next?! 128

Troubleshooting guide! 129

Introduction! 129

How to troubleshoot ! 129

Pre-Perl error messages! 130

Within-Perl error messages! 130

Other errors! 132

Table of common Perl error messages! 133

Version history! 134

Unix and Perl Primer for Biologists

12

Preamble

What computers can run Perl?
One of the main goals of this course is to learn Perl. As a programming language, Perl
is platform agnostic. You can write (and run) Perl scripts on just about any computer.
We will assume that >99% of the people who are reading this use either a Microsoft
Windows PC, an Apple Mac, or one of the many Linux distributions that are available
(Linux can be considered as a type of Unix, though this claim might offend the Linux
purists reading this). A small proportion of you may be using some other type of
dedicated Unix platform, such as Sun or SGI. For the Perl examples, none of this
matters. All of the Perl scripts in this course should work on any machine that you can
install Perl on (if an example doesnʼt work then please let us know!).

What computers can run Unix?
Unlike our Perl documentation, the Unix part of this course is not quite so portable to
other types of computer. We decided that this course should include an introduction to
Unix because most bioinformatics happens on Unix/Linux platforms; so it makes sense
to learn how to run your Perl scripts in the context of a Unix operating system. If you
read the Introduction, then you will know that all modern Mac computers are in fact Unix
machines. This makes teaching Perl & Unix on a Mac a relatively straightforward
proposition, though we are aware that this does not help those of you who use
Windows. This is something that we will try to specifically address in later updates to
this course. For now, we would like to point out that you can achieve a Unix-like
environment on your Windows PC in one of two ways:

1) Install Cygwin - this provides a Linux-like environment on your PC, it is also free to
download. There are some differences between Cygwin and other types of Unix
which may mean that not every Unix example in this course works exactly as
described, but overall it should be sufficient for you to learn the basics of Unix.

2) Install Linux by using virtualization software - there are many pieces of software that
will now allow you effectively install one operating system within another operating
system. Microsoft has itʼs own (free) Virtual PC software, and here are some
instructions for installing Linux using Virtual PC.

You should also be aware that there is a lot of variation within the world of Unix/Linux.
Most commands will be the same, but the layout of the file system may look a little
different. Hopefully our documentation should work for most types of Unix, but bear in
mind it was written (and tested) with Appleʼs version of Unix.

Unix and Perl Primer for Biologists

13

http://www.cygwin.com/
http://www.cygwin.com/
http://en.wikipedia.org/wiki/Platform_virtualization
http://en.wikipedia.org/wiki/Platform_virtualization
http://www.microsoft.com/windows/virtual-pc/default.aspx
http://www.microsoft.com/windows/virtual-pc/default.aspx
http://www.pcreview.co.uk/articles/Windows/Run_Linux_in_Windows/
http://www.pcreview.co.uk/articles/Windows/Run_Linux_in_Windows/
http://www.pcreview.co.uk/articles/Windows/Run_Linux_in_Windows/
http://www.pcreview.co.uk/articles/Windows/Run_Linux_in_Windows/

Do I need to run this course from a USB drive?
We originally developed this course to be taught in a computer classroom environment.
Because of this we decided to put the entire course (documentation & data) on to a
USB flash drive. One reason for doing this was so that people could take the flash drive
home with them and continue working on their own computers.

If you have your own computer which is capable of running a Unix/Linux environment
then you might prefer to use that, rather than using a flash drive. If you have
downloaded the course material, then after unpacking it you should have a directory
called ʻUnix_and_Perl_courseʼ. You can either copy this directory (about 100 MB in size
at the time of writing) to a flash drive or to any other directory within your Unix
environment. Instructions in this document will assume that you are working on a flash
drive on a Mac computer, so many of the Unix examples will not work exactly as written
on other systems. In most cases you will just need to change the name of any
directories the are used in the examples.

In our examples, we assume that the course material is located on a flash drive that is
named ʻUSBʼ. If you run the course from your own flash-drive, you might find it easier to
rename it to ʻUSBʼ as well, though you donʼt have to do this.

Unix and Perl Primer for Biologists

14

Unix Part 1
Learning the essentials

Introduction to Unix
These exercises will (hopefully) teach you to become comfortable when working in the
environment of the Unix terminal. Unix contains many hundred of commands but you
will probably use just 10 or so to achieve most of what you want to do.

You are probably used to working with programs like the Apple Finder or the Windows
File Explorer to navigate around the hard drive of your computer. Some people are so
used to using the mouse to move files, drag files to trash etc. that it can seem strange
switching from this behavior to typing commands instead. Be patient, and try — as
much as possible — to stay within world of the Unix terminal. Please make sure you
complete and understand each task before moving on to the next one.

U1. The Terminal
A ʻterminalʼ is the common name for the program that does two main things. It allows
you to type input to the computer (i.e. run programs, move/view files etc.) and it allows
you to see output from those programs. All Unix machines will have a terminal program
and on Apple computers, the terminal application is unsurprisingly named ʻTerminalʼ.

Task U1.1: Use the ʻSpotlightʼ search tool (the little magnifying glass in the top right of
the menu bar) to find and launch Appleʼs Terminal application.

Unix and Perl Primer for Biologists

15

You should now see something that looks like the following (the text that appears inside
your terminal window will be slightly different):

Before we go any further, you should note that you can:

• make the text larger/smaller (hold down ʻcommandʼ and either ʻ+ʼ or ʻ–ʼ)
• resize the window (this will often be necessary)
• have multiple terminal windows on screen (see the ʻShellʼ menu)
• have multiple tabs open within each window (again see the ʻShellʼ menu)

There will be many situations where it will be useful to have multiple terminals open and
it will be a matter of preference as to whether you want to have multiple windows, or
one window with multiple tabs (there are keyboard shortcuts for switching between
windows, or moving between tabs).

Unix and Perl Primer for Biologists

16

U2. Your first Unix command
Unix keeps files arranged in a hierarchical structure. From the 'top-level' of the
computer, there will be a number of directories, each of which can contain files and
subdirectories, and each of those in turn can of course contain more files and
directories and so on, ad infinitum. Itʼs important to note that you will always be “in” a
directory when using the terminal. The default behavior is that when you open a new
terminal you start in your own 'home” directory (containing files and directories that only
you can modify).

To see what files are in our home directory, we need to use the ls command. This
command ʻlistsʼ the contents of a directory. So why donʼt they call the command ʻlistʼ
instead? Well, this is a good thing because typing long commands over and over again
is tiring and time-consuming. There are many (frequently used) Unix commands that are
just two or three letters. If we run the ls command we should see something like:

olson27-1:~ kbradnam$ ls
Application Shortcuts	 Documents	 	 Library
Desktop	 	 	 Downloads
olson27-1:~ kbradnam$

There are four things that you should note here:

1) You will probably see different output to what is shown here, it depends on your
computer. Donʼt worry about that for now.

2) The 'olson27-1:~ kbradnam$' text that you see is the Unix command prompt. It
contains my user name (kbradnam), the name of the machine that I am working on
(ʻolson27-1ʼ and the name of the current directory (ʻ~ʼ more on that later). Note that
the command prompt might not look the same on different Unix systems. In this case,
the $ sign marks the end of the prompt.

3) The output of the ls command lists five things. In this case, they are all directories,
but they could also be files. Weʼll learn how to tell them apart later on.

4) After the ls command finishes it produces a new command prompt, ready for you to
type your next command.

The ls command is used to list the contents of any directory, not necessarily the one
that you are currently in. Plug in your USB drive, and type the following:

olson27-1:~ kbradnam$ ls /Volumes/USB/Unix_and_Perl_course
Applications	 Code	 	 Data	 	 Documentation	

On a Mac, plugged in drives appear as subdirectories in the special ʻVolumesʼ directory.
The name of the USB flash drive is ʻUSBʼ. The above output shows a set of four
directories that are all “inside” the ʻUnix_and_Perl_courseʼ directory). Note how the
underscore character ʻ_ʼ is used to space out words in the directory name.

Unix and Perl Primer for Biologists

17

http://en.wikipedia.org/wiki/Ls
http://en.wikipedia.org/wiki/Ls
http://en.wikipedia.org/wiki/Command_line_interface
http://en.wikipedia.org/wiki/Command_line_interface

U3: The Unix tree
Looking at directories from within a Unix terminal can often seem confusing. But bear in
mind that these directories are exactly the same type of folders that you can see if you
use Appleʼs graphical file-management program (known as ʻThe Finderʼ). A tree analogy
is often used when describing computer filesystems. From the root level (/) there can be
one or more top level directories, though most Macs will have about a dozen. In the
example below, we show just three. When you log in to a computer you are working with
your files in your home directory, and this will nearly always be inside a ʻUsersʼ directory.
On many computers there will be multiple users.

All Macs have an applications directory where all the GUI (graphical user interface)
programs are kept (e.g. iTunes, Microsoft Word, Terminal). Another directory that will be
on all Macs is the Volumes directory. In addition to any attached external drives, the
Volumes directory should also contain directories for every internal hard drive (of which
there should be at least one, in this case itʼs simply called ʻMacʼ). It will help to think of
this tree when we come to copying and moving files. E.g. if I had a file in the ʻCodeʼ
directory and wanted to copy it to the ʻkeithʼ directory, I would have to go up four levels
to the root level, and then down two levels.

Unix and Perl Primer for Biologists

18

U4: Finding out where you are
There may be many hundreds of directories on any Unix machine, so how do you know
which one you are in? The command pwd will Print the Working Directory and thatʼs
pretty much all this command does:

olson27-1:~ kbradnam$ pwd
/users/clmuser

When you log in to a Unix computer, you are typically placed into your home directory.
In this example, after I log in, I am placed in a directory called 'clmuser' which itself is a
subdirectory of another directory called 'users'. Conversely, 'users' is the parent
directory of 'clmuser'. The first forward slash that appears in a list of directory names
always refers to the top level directory of the file system (known as the root directory).
The remaining forward slash (between ʻusersʼ and ʻclmuserʼ) delimits the various parts
of the directory hierarchy. If you ever get ʻlostʼ in Unix, remember the pwd command.

As you learn Unix you will frequently type commands that donʼt seem to work. Most of
the time this will be because you are in the wrong directory, so itʼs a really good habit to
get used to running the pwd command a lot.

U5: Getting from ʻAʼ to ʻBʼ
We are in the home directory on the computer but we want to to work on the USB drive.
To change directories in Unix, we use the cd command:

olson27-1:~ kbradnam$ cd /Volumes/USB/Unix_and_Perl_course
olson27-1:USB kbradnam$ ls
Applications	 Code	 	 Data	 	 Documentation
olson27-1:USB kbradnam$ pwd
/Volumes/USB/Unix_and_Perl_course

The first command reads as ʻchange directory to the Unix_and_Perl_course directory
that is inside a directory called ʻUSBʼ, which itself is inside the Volumes directory that is
at the root level of the computerʼ. Did you notice that the command prompt changed
after you ran the c d command? The ʻ~ʼ sign should have changed to
ʻUnix_and_Perl_courseʼ. This is a useful feature of the command prompt. By default it
reminds you where you are as you move through different directories on the computer.

NB. For the sake of clarity, I will now simplify the
command prompt in all of the following examples

Unix and Perl Primer for Biologists

19

http://en.wikipedia.org/wiki/Pwd
http://en.wikipedia.org/wiki/Pwd
http://en.wikipedia.org/wiki/Working_directory
http://en.wikipedia.org/wiki/Working_directory
http://en.wikipedia.org/wiki/Root_directory
http://en.wikipedia.org/wiki/Root_directory
http://en.wikipedia.org/wiki/Cd_(command)
http://en.wikipedia.org/wiki/Cd_(command)

U6: Root is the root of all evil
In the previous example, we could have achieved the same result in three separate
steps:

$ cd /Volumes
$ cd USB
$ cd Unix_and_Perl_course

Note that the second and third commands do not include a forward slash. When you
specify a directory that starts with a forward slash, you are referring to a directory that
should exist one level below the root level of the computer. What happens if you try the
following two commands? The first command should produce an error message.

$ cd Volumes
$ cd /Volumes

The error is because without including a leading slash, Unix is trying to change to a
ʻVolumesʼ directory below your current level in the file hierarchy (/Volumes/USB/
Unix_and_Perl_course), and there is no directory called Volumes at this location.

U7: Up, up, and away
Frequently, you will find that you want to go 'upwards' one level in the directory
hierarchy. Two dots (..) are used in Unix to refer to the parent directory of wherever you
are. Every directory has a parent except the root level of the computer:

$ cd /Volumes/USB/Unix_and_Perl_course
$ pwd
/Volumes/USB/Unix_and_Perl_course
$ cd ..
$ pwd
/Volumes/USB

What if you wanted to navigate up two levels in the file system in one go? Itʼs very
simple, just use two sets of the .. operator, separated by a forward slash:

$ cd /Volumes/USB/Unix_and_Perl_course
$ pwd
/Volumes/USB/Unix_and_Perl_course
$ cd ../..
$ pwd
/Volumes

Unix and Perl Primer for Biologists

20

U8: Iʼm absolutely sure that this is all relative
Using cd .. allows us to change directory relative to where we are now. You can also
always change to a directory based on its absolute location. E.g. if you are working in
the /Volumes/USB/Unix_and_Perl_course/Code directory and you then want to change
to the /Volumes/USB/Unix_and_Perl_course/Data directory, then you could do either of
the following:

$ cd ../Data

or...

$ cd /Volumes/USB/Unix_and_Perl_course/Data

They both achieve the same thing, but the 2nd example requires that you know about
the full path from the root level of the computer to your directory of interest (the 'path' is
an important concept in Unix). Sometimes it is quicker to change directories using the
relative path, and other times it will be quicker to use the absolute path.

U9: Time to go home
Remember that the command prompt shows you the name of the directory that you are
currently in, and that when you are in your home directory it shows you a tilde character
(~) instead? This is because Unix uses the tilde character as a short-hand way of
specifying a home directory.

Task U9.1: See what happens when you try the following commands (use the pwd
command after each one to confirm the results):

$ cd /
$ cd ~
$ cd /
$ cd

Hopefully, you should find that cd and cd ~ do the same thing, i.e. they take you back to
your home directory (from wherever you were). Also notice how you can specify the
single forward slash to refer to the root directory of the computer. When working with
Unix you will frequently want to jump straight back to your home directory, and typing cd
is a very quick way to get there.

Unix and Perl Primer for Biologists

21

http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs
http://en.wikipedia.org/wiki/Tilde#Directories_and_URLs

U10: Making the ʻlsʼ command more useful
The '..' operator that we saw earlier can also be used with the ls command. Can you
see how the following command is listing the contents of the root directory? If you want
to test this, try running ls / and see if the output is any different.

$ cd /Volumes/USB/Unix_and_Perl_course
$ ls ../../..
Applications	 	 Volumes	 	 net
CRC	 	 	 	 bin	 	 	 oldlogins
Developer	 	 	 cores		 	 private
Library	 	 	 dev	 	 	 sbin
Network	 	 	 etc	 	 	 tmp
Server	 	 	 home	 	 	 usr
System	 	 	 mach_kernel		 var
Users		 	 	 mach_kernel.ctfsys

The ls command (like most Unix commands) has a set of options that can be added to
the command to change the results. Command-line options in Unix are specified by
using a dash (ʻ-ʼ) after the command name followed by various letters, numbers, or
words. If you add the letter ʻlʼ to the ls command it will give you a ʻlongerʼ output
compared to the default:

$ ls -l /Volumes/USB/Unix_and_Perl_course
total 192
drwxrwxrwx 1 keith staff 16384 Oct 3 09:03 Applications
drwxrwxrwx 1 keith staff 16384 Oct 3 11:11 Code
drwxrwxrwx 1 keith staff 16384 Oct 3 11:12 Data
drwxrwxrwx 1 keith staff 16384 Oct 3 11:34 Documentation

For each file or directory we now see more information (including file ownership and
modification times). The ʻdʼ at the start of each line indicates that these are directories

Task U10.1: There are many, many different options for the ls command. Try out the
following (against any directory of your choice) to see how the output changes.

ls -l
ls -R
ls -l -t -r
ls -lh

Note that the last example combine multiple options but only use one dash. This is a
very common way of specifying multiple command-line options. You may be wondering
what some of these options are doing. Itʼs time to learn about Unix documentation...

Unix and Perl Primer for Biologists

22

U11: Man your battle stations!
If every Unix command has so many options, you might be wondering how you find out
what they are and what they do. Well, thankfully every Unix command has an
associated ʻmanualʼ that you can access by using the man command. E.g.

$ man ls
$ man cd
$ man man (yes even the man command has a manual page)

When you are using the man command, press space to scroll down a page, b to go
back a page, or q to quit. You can also use the up and down arrows to scroll a line at a
time. The man command is actually using another Unix program, a text viewer called
less, which weʼll come to later on.

Some Unix commands have very long manual pages, which might seem very confusing.
It is typical though to always list the command line options early on in the
documentation, so you shouldnʼt have to read too much in order to find out what a
command-line option is doing.

U12: Make directories, not war
If we want to make a new directory (e.g. to store some work related data), we can use
the mkdir command:

$ cd /Volumes/USB/Unix_and_Perl_course
$ mkdir Work
$ ls
Applications	 Code	 	 Data	 	 Documentation	 	 Work
$ mkdir Temp1
$ cd Temp1
$ mkdir Temp2
$ cd Temp2
$ pwd
/Volumes/USB/Unix_and_Perl_course/Temp1/Temp2

In the last example we created the two temp directories in two separate steps. If we had
used the -p option of the mkdir command we could have done this in one step. E.g.

$ mkdir -p Temp1/Temp2

Task U12.1: Practice creating some directories and navigating between them using the
cd command. Try changing directories using both the absolute as well as the relative
path (see section U8).

Unix and Perl Primer for Biologists

23

http://en.wikipedia.org/wiki/Mkdir
http://en.wikipedia.org/wiki/Mkdir

U13: Time to tidy up
We now have a few (empty) directories that we should remove. To do this use the rmdir
command, this will only remove empty directories so it is quite safe to use. If you want
to know more about this command (or any Unix command), then remember that you
can just look at its man page.

$ cd /Volumes/USB/Unix_and_Perl_course
$ rmdir Work

Task U13.1: Remove the remaining empty Temp directories that you have created

U14: The art of typing less to do more
Saving keystrokes may not seem important, but the longer that you spend typing in a
terminal window, the happier you will be if you can reduce the time you spend at the
keyboard. Especially, as prolonged typing is not good for your body. So the best Unix tip
to learn early on is that you can tab complete the names of files and programs on most
Unix systems. Type enough letters that uniquely identify the name of a file, directory or
program and press tab...Unix will do the rest. E.g. if you type 'tou' and then press tab,
Unix will autocomplete the word to touch (which we will learn more about in a minute).
In this case, tab completion will occur because there are no other Unix commands that
start with 'tou'. If pressing tab doesnʼt do anything, then you have not have typed
enough unique characters. In this case pressing tab twice will show you all possible
completions. This trick can save you a LOT of typing...if you don't use tab-completion
then you must be a masochist.

Task U14.1: Navigate to your home directory, and then use the cd command to change
to the /Volumes/USB/Unix_and_Perl_course/Code/ directory. Use tab completion for
each directory name. This should only take 13 key strokes compared to 41 if you type
the whole thing yourself.

Another great time-saver is that Unix stores a list of all the commands that you have
typed in each login session. Type history to see all of the commands you have typed
so far. You can use the up and down arrows to access anything from your history. So if
you type a long command but make a mistake, press the up arrow and then you can
use the left and right arrows to move the cursor in order to make a change.

Unix and Perl Primer for Biologists

24

http://en.wikipedia.org/wiki/Rmdir
http://en.wikipedia.org/wiki/Rmdir
http://en.wikipedia.org/wiki/Command_line_completion
http://en.wikipedia.org/wiki/Command_line_completion

U15: U can touch this
The following sections will deal with Unix commands that help us to work with files, i.e.
copy files to/from places, move files, rename files, remove files, and most importantly,
look at files. Remember, we want to be able to do all of these things without leaving the
terminal. First, we need to have some files to play with. The Unix command touch will let
us create a new, empty file. The touch command does other things too, but for now we
just want a couple of files to work with.

$ cd /Volumes/USB/Unix_and_Perl_course
$ touch heaven.txt
$ touch earth.txt
$ ls
Applications Code	 Data	 Documentation	 earth.txt heaven.txt

U16: Moving heaven and earth
Now, letʼs assume that we want to move these files to a new directory (ʻTempʼ). We will
do this using the Unix mv (move) command:

$ mkdir Temp
$ mv heaven.txt Temp/
$ mv earth.txt Temp/
$ ls
Applications Code	 Data	 Documentation	 Temp
$ ls Temp
earth.txt heaven.txt

For the mv command, we always have to specify a source file (or directory) that we want
to move, and then specify a target location. If we had wanted to we could have moved
both files in one go by typing any of the following commands:

$ mv *.txt Temp/
$ mv *t Temp/
$ mv *ea* Temp/

The asterisk (*) acts as a wild-card character, essentially meaning ʻmatch anything'. The
second example works because there are no other files or directories in the directory
that end with the letters 't' (if there was, then they would be copied too). Likewise, the
third example works because only those two files contain the letters ʻeaʼ in their names.
Using wild-card characters can save you a lot of typing.

Task U16.1: Use touch to create three files called 'fat', 'fit', and ʻfeetʼ inside the Temp
directory. Then type either 'ls f?t' or ʻls f*tʼ and see what happens. The ? character is
also a wild-card but with a slightly different meaning. Try typing ʻls f??tʼ as well.

Unix and Perl Primer for Biologists

25

http://en.wikipedia.org/wiki/Touch_(Unix)
http://en.wikipedia.org/wiki/Touch_(Unix)
http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Wildcard_character
http://en.wikipedia.org/wiki/Wildcard_character

U17: Renaming files
In the earlier example, the destination for the mv command was a directory name
(Temp). So we moved a file from its source location to a target location ('source' and
'target' are important concepts for many Unix commands). But note that the target could
have also been a (different) file name, rather than a directory. E.g. letʼs make a new file
and move it whilst renaming it at the same time:

$ touch rags
$ ls
Applications 	 Code	 	 Data	 Documentation	 Temp rags
$ mv rags Temp/riches
$ ls Temp/
earth.txt heaven.txt riches

In this example we create a new file ('rags') and move it to a new location and in the
process change the name (to 'riches'). So mv can rename a file as well as move it. The
logical extension of this is using mv to rename a file without moving it (you have to use
mv to do this as Unix does not have a separate 'rename' command):

$ mv Temp/riches Temp/rags
$ ls Temp/
earth.txt heaven.txt rags

U18: Stay on target
It is important to understand that as long as you have specified a 'source' and a 'target'
location when you are moving a file, then it doesnʼt matter what your current directory is.
You can move or copy things within the same directory or between different directories
regardless of whether you are “in” any of those directories. Moving directories is just like
moving files:

$ mkdir Temp2
$ ls
Applications 	 Code	 	 Data	 Documentation	 Temp Temp2
$ mv Temp2 Temp/
$ ls Temp/
Temp2		 earth.txt	 	 heaven.txt	 rags

This step moves the Temp2 directory inside the Temp directory.

Task U18.1: Create another Temp directory (Temp3) and then change directory to your
home directory (/users/clmuser). Without changing directory, move the Temp3 directory
to inside the /Volumes/USB/Temp directory.

Unix and Perl Primer for Biologists

26

U19: Here, there, and everywhere
The philosophy of ʻnot having to be in a directory to do something in that directoryʼ,
extends to just about any operation that you might want to do in Unix. Just because we
need to do something with file X, it doesnʼt necessarily mean that we have to change
directory to wherever file X is located. Letʼs assume that we just want to quickly check
what is in the Data directory before continuing work with whatever we were previously
doing in /Volumes/USB/Unix_and_Perl_course. Which of the following looks more
convenient:

$ cd Data
$ ls
Arabidopsis	GenBank	 	 Misc	 	 Unix_test_files
$ cd ..

or...

$ ls Data/
Arabidopsis	GenBank	 	 Misc	 	 Unix_test_files

In the first example, we change directories just to run the ls command, and then we
change directories back to where we were again. The second example shows how we
could have just stayed where we were.

U20: To slash or not to slash?
Task U20.1: Run the following two commands and compare the output

$ ls Documentation

$ ls Documentation/

The two examples are not quite identical, but they produce identical output. So does the
trailing slash character in the second example matter? Well not really. In both cases we
have a directory named ̒ Documentationʼ and it is optional as to whether you include the
trailing slash. When you tab complete any Unix directory name, you will find that a
trailing slash character is automatically added for you. This becomes useful when that
directory contains subdirectories which you also want to tab complete.

I.e. imagine if you had to type the following (to access a buried directory ̒ gggʼ) and tab-
completion didnʼt add the trailing slash characters. Youʼd have to type the seven slashes
yourself.

$ cd aaa/bbb/ccc/ddd/eee/fff/ggg/

Unix and Perl Primer for Biologists

27

U21: The most dangerous Unix command you will
ever learn!
You've seen how to remove a directory with the rmdir command, but rmdir wonʼt
remove directories if they contain any files. So how can we remove the files we have
created (in /Volumes/USB/Unix_and_Perl_course/Temp)? In order to do this, we will
have to use the rm (remove) command.

Potentially, rm is a very dangerous command; if you delete something with rm, you will
not get it back! It does not go into the trash or recycle can, it is permanently removed. It
is possible to delete everything in your home directory (all directories and
subdirectories) with rm, that is why it is such a dangerous command.

Let me repeat that last part again. It is possible to delete EVERY file you have ever
created with the rm command. Are you scared yet? You should be. Luckily there is a
way of making rm a little bit safer. We can use it with the -i command-line option which
will ask for confirmation before deleting anything:

$ pwd
/Volumes/USB/Unix_and_Perl_course/Temp
$ ls
Temp2		 Temp3		 earth.txt	 heaven.txt	 rags
$ rm -i earth.txt
remove earth.txt? y
$ rm -i heaven.txt
remove heaven.txt? y

We could have simplified this step by using a wild-card (e.g. rm -i *.txt).

Task U21.1: Remove the last file in the Temp directory (ʻragsʼ) and then remove the two
empty directories (Temp 2 & Temp3).

Please read the next section VERY carefully. Misuse of the rm
command can lead to needless death & destruction

Unix and Perl Primer for Biologists

28

http://en.wikipedia.org/wiki/Rm_(Unix)
http://en.wikipedia.org/wiki/Rm_(Unix)

U22: Go forth and multiply
Copying files with the cp (copy) command is very similar to moving them. Remember to
always specify a source and a target location. Letʼs create a new file and make a copy
of it.

$ touch file1
$ cp file1 file2
$ ls
file1	file2		

What if we wanted to copy files from a different directory to our current directory? Letʼs
put a file in our home directory (specified by ʻ~ʼ remember) and copy it to the USB drive:

$ touch ~/file3
$ ls
file1	file2		
$ cp ~/file3 .
$ ls
file1 file2 file3

This last step introduces another new concept. In Unix, the current directory can be
represented by a ʻ.ʼ (dot) character. You will mostly use this only for copying files to the
current directory that you are in. But just to make a quick point, compare the following:

$ ls
$ ls .
$ ls ./

In this case, using the dot is somewhat pointless because ls will already list the
contents of the current directory by default. Also note again how the trailing slash is
optional.

Letʼs try the opposite situation and copy these files back to the home directory (even
though one of them is already there). The default behavior of copy is to overwrite
(without warning) files that have the same name, so be careful.

$ cp file* ~/

Based on what we have already covered, do you think the trailing slash in ʻ~/ʼ is
necessary?

Unix and Perl Primer for Biologists

29

Notice the dot character!

http://en.wikipedia.org/wiki/Cp_(Unix)
http://en.wikipedia.org/wiki/Cp_(Unix)

U23: Going deeper and deeper
The cp command also allows us (with the use of a command-line option) to copy entire
directories (also note how the ls command in this example is used to specify multiple
directories):

$ mkdir Storage
$ mv file* Storage/
$ ls
Storage
$ cp -R Storage Storage2
$ ls Storage Storage2
Storage:
file1	file2	file3

Storage2:
file1	file2	file3

Task U23.1: The -R option means ʻcopy recursivelyʼ, many other Unix commands also
have a similar option. See what happens if you donʼt include the -R option. Weʼve
finished with all of these temporary files now. Make sure you remove the Temp directory
and itʼs contents (remember to always use rm -i).

U24: When things go wrong
At this point in the course, you may have tried typing some of these commands and
have found that things did not work as expected. Some people will then assume that the
computer doesnʼt like them and that it is being deliberately mischievous. The more likely
explanation is that you made a typing error. Maybe you have seen one the following
error messages:

$ ls Codee
ls: Codee: No such file or directory

$ cp Data/Unix_test_files/* Docmentation
usage: cp [-R [-H | -L | -P]] [-fi | -n] [-pvX] source_file target_file
 cp [-R [-H | -L | -P]] [-fi | -n] [-pvX] source_file ... target_directory

In both cases, I made a typo when specifying the name of the directories. With the ls
command, we get a fairly useful error message. With the cp command we get a more
cryptic message that reveals the correct usage statement for this command. In general,
if a command fails, check your current directory (pwd) and check that all the files or
directories that you mention actually exist (and are in the right place). Many errors occur
because people are not in the right directory!

Unix and Perl Primer for Biologists

30

U25: Less is more
So far we have covered listing the contents of directories and moving/copying/deleting
either files and/or directories. Now we will quickly cover how you can look at files; in
Unix the less command lets you view (but not edit) text files. Letʼs take a look a file of
Arabidopsis thaliana protein sequences:

$ less Data/Arabidopsis/At_proteins.fasta

When you are using less, you can bring up a page of help commands by pressing h,
scroll forward a page by pressing 'space', or go forward or backwards one line at a time
by pressing j or k. To exit less, press q (for quit). The less program also does about a
million other useful things (including text searching).

U26: Directory enquiries
When you have a directory containing a mixture of files and directories, it is not often
clear which is which. One solution is to use ls -l which will put a ʻdʼ at the start of each
line of output for items which are directories. A better solution is to use ls -p. This
command simply adds a trailing slash character to those items which are directories.
Compare the following:

$ ls
Applications	 Data	 	 file1
Code	 	 Documentation	 file2

$ ls -p
Applications/	 Data/		 file1
Code/		 Documentation/	 file2

Hopefully, youʼll agree that the 2nd example makes things a little clearer. You can also
do things like always capitalizing directory names (like I have done) but ideally I would
suggest that you always use ls -p. If this sounds a bit of a pain, then it is. Ideally you
want to be able to make ls -p the default behavior for ls. Luckily, there is a way of
doing this by using Unix aliases. Itʼs very easy to create an alias:

$ alias ls='ls -p'
$ ls
Applications/	 Data/		 file1
Code/		 Documentation/	 file2

If you have trouble remembering what some of these very short Unix commands do,
then aliases allow you to use human-readable alternatives. I.e. you could make a ʻcopyʼ
alias for the cp commandʼ or even make ʻlist_files_sorted_by_dateʼ perform the ls -lt

Unix and Perl Primer for Biologists

31

http://en.wikipedia.org/wiki/Less_(Unix)
http://en.wikipedia.org/wiki/Less_(Unix)
http://en.wikipedia.org/wiki/Alias_(command)
http://en.wikipedia.org/wiki/Alias_(command)

command. Note that aliases do not replace the original command. It can be dangerous
to use the name of an existing command as an alias for a different command. I.e. you
could make an rm alias that put files to a ʻtrashʼ directory by using the mv command. This
might work for you, but what if you start working on someone elseʼs machine who
doesnʼt have that alias? Or what if someone else starts working on your machine?

Task U26.1: Create an alias such that typing rm will always invoke rm -i. Try running
the alias command on its own to see what happens. Now open a new terminal window
(or a new tab) and try running your ls alias. What happens?

U27: Fire the editor
The problem with aliases is that they only exist in the current terminal session. Once
you log out, or use a new terminal window, then youʼll have to retype the alias.
Fortunately though, there is a way of storing settings like these. To do this, we need to
be able to create a configuration file and this requires using a text editor. We could use
a program like TextEdit to do this (or even Microsoft Word), but as this is a Unix course,
we will use a simple Unix editor called nano. Letʼs create a file called profile:

$ cd /Volumes/USB/Unix_and_Perl_course
$ nano profile

You should see the following appear in your terminal:

Unix and Perl Primer for Biologists

32

http://en.wikipedia.org/wiki/Nano_(text_editor)
http://en.wikipedia.org/wiki/Nano_(text_editor)

The bottom of the nano window shows you a list of simple commands which are all
accessible by typing ʻControlʼ plus a letter. E.g. Control + X exits the program.

Task U27.1: Type the following text in the editor and then save it (Control + O). Nano
will ask if you want to ʻsave the modified bufferʼ and then ask if you want to keep the
same name. Then exit nano (Control + X) and use less to confirm that the profile file
contains the text you added.

some useful command line short-cuts
alias ls='ls -p'
alias rm='rm -i'

Now you have successfully created a configuration file (called ʻprofileʼ) which contains
two aliases. The first line that starts with a hash (#) is a comment, these are just notes
that you can add to explain what the other lines are doing. But how do you get Unix to
recognize the contents of this file? The source command tells Unix to read the contents
of a file and treat it as a series of Unix commands (but it will ignore any comments).

Task U27.2: Open a new terminal window or tab (to ensure that any aliases will not
work) and then type the following (make sure you first change to the correct directory):

$ source profile

Now try the ls command to see if the output looks different. Next, use touch to make a
new file and then try deleting it with the rm command. Are the aliases working?

U28: Hidden treasure
In addition to adding aliases, profile files in Unix are very useful for many other reasons.
We have actually already created a profile for you. Itʼs in /Volumes/USB/
Unix_and_Perl_course but you probably wonʼt have seen it yet. Thatʼs because it is a
hidden file named ʻ.profileʼ (dot profile). If a filename starts with a dot, Unix will treat it as
a hidden file. To see it, you can use ls -a which lists all hidden files (there may be
several more files that appear).

Task U28.1: Use less to look at the profile file that we have created. See if you can
understand what all the lines mean (any lines that start with a # are just comments).
Use source to read this file. See how this changes the behavior of typing cd on its own.
You can now delete the profile file that you made earlier, from now on we will use
the .profile file.

If you have a .profile file in your home directory then it will be automatically read every
time you open a new terminal. A problem for this class is your home directories are
wiped each day, so we canʼt store files on the computer (which is why we are using the
USB drive). So for this course we have to do a bit of extra work.

Unix and Perl Primer for Biologists

33

U29: Sticking to the script
Unix can also be used as a programming language just like Perl. Depending on what
you want to do, a Unix script might solve all your problems and mean that you donʼt
really need to learn Perl at all.

So how do you make a Unix script (which are commonly called ʻshell scriptsʼ)? At the
simplest level, we just write one or more Unix commands to a file and then treat that file
as if it was any other Unix command or program.

Task U29.1: Copy the following two lines to a file (using nano). Name that file hello.sh
(shell scripts are typically given a .sh extension) and make sure that you save this file
in /Volumes/USB/Unix_and_Perl_course/Code.

my first Unix shell script
echo "Hello World"

When you have done that, simply type ʻhello.shʼ and see what happens. If you have
previously run source .profile then you should be able to run ʻhello.shʼ from any
directory that you navigate to. If it worked, then it should have printed ʻHello worldʼ. This
very simple script uses the Unix command echo which just prints output to the screen.
Also note the comment that precedes the echo command, it is a good habit to add
explanatory comments.

Task U29.2: Try moving the script outside of the Code directory (maybe move it ʻupʼ one
level) and then cd to that directory. Now try running the script again. You should find that
it doesnʼt work anymore. Now try running ./hello.sh (thatʼs a dot + slash at the
beginning). It should work again.

Remember to type:

ʻsource /Volumes/USB/Unix_and_Perl_course/.profileʼ

every time you use a new terminal window

Unix and Perl Primer for Biologists

34

U30: Keep to the $PATH
The reason why the script worked when it was in the Code directory and then stopped
working when you moved it is because we did something to make the Code directory a
bit special. Remember this line that is in your .profile file?

PATH=$PATH":$HOME/Code"

When you try running any program in Unix, your computer will look in a set of
predetermined places to see if a program by that name lives there. All Unix commands
are just files that live in directories somewhere on your computer. Unix uses something
called $PATH (which is an environment variable) to store a list of places to look for
programs to run. In our .profile file we have just told Unix to also look in your Code
directory. If we didnʼt add the Code directory to the $PATH, then we have to run the
program by first typing ./ (dot slash). Remember that the dot means the current
directory. Think of it as a way of forcing Unix to run a program (including Perl scripts).

U31: Ask for permission
Programs in Unix need permission to be run. We will normally always have to type the
following for any script that we create:

$ chmod u+x hello.sh

This would use the chmod to add executable permissions (+x) to the file called
ʻhello.shʼ (the ʻuʼ means add this permission to just you, the user). Without it, your script
wonʼt run. Except that it did. One of the oddities of using the USB drive for this course,
is that files copied to a USB drive have all permissions turned on by default. Just
remember that you will normally need to run chmod on any script that you create. Itʼs
probably a good habit to get into now.

The chmod command can also modify read and write permissions for files, and change
any of the three sets of permissions (read, write, execute) at the level of ʻuserʼ, ʻgroupʼ,
and ʻotherʼ. You probably wonʼt need to know any more about the chmod command
other than you need to use it to make scripts executable.

Unix and Perl Primer for Biologists

35

http://en.wikipedia.org/wiki/Chmod
http://en.wikipedia.org/wiki/Chmod

U32: The power of shell scripts
Time to make some Unix shell scripts that might actually be useful.

Task U32.1: Look in the Data/Unix_test_files directory. You should see several files (all
are empty) and four directories. Now put the following information into a shell script
(using nano) and save it as cleanup.sh.

#!/bin/bash

mv *.txt Text
mv *.jpg Pictures
mv *.mp3 Music
mv *.fa Sequences

Make sure that this script is saved in Code directory. Now return to the
Unix_test_files directory and run this script. It should place the relevant files in the
correct directories. This is a relatively simple use of shell scripting. As you can see the
script just contains regular Unix commands that you might type at the command prompt.
But if you had to do this type of file sorting every day, and had many different types of
file, then it would save you a lot of time.

Did you notice the #!/bin/bash line in this script? There are several different types of
shell script in Unix, and this line makes it clearer that a) that this is actually a file that
can be treated as a program and b) that it will be a bash script (bash is a type of Unix).
As a general rule, all type of scriptable programming languages should have a similar
line as the first line in the program.

Task U32.2: Here is another script. Copy this information into a file called
change_file_extension.sh and place that file in the Code directory.

#!/bin/bash

for filename in *.$1
do
 mv $filename ${filename%$1}$2
done

Now go to the Data/Unix_test_files/Text directory. If you have run the exercise from Task
U32.1 then your text directory should now contain three files. Run the following
command:

$ change_file_extension.sh txt text

Unix and Perl Primer for Biologists

36

Now run the ls command to see what has happened to the files in the directory. You
should see that all the files that ended with ʻtxtʼ now end with ʻtextʼ. Try using this script
to change the file extensions of other files.

Itʼs not essential that you understand exactly how this script works at the moment
(things will become clearer as you learn Perl), but you should at least see how a
relatively simple Unix shell script can be potentially very useful.

End of part 1.
You can now continue to learn a series of

much more powerful Unix commands,
or you can switch to learning Perl.

The choice is yours!

Unix and Perl Primer for Biologists

37

Unix Part 2
How to Become a Unix power user

The commands that you have learnt so far are essential for doing any work in Unix but
they don't really let you do anything that is very useful. The following sections will
introduce a few new commands that will start to show you how powerful Unix is.

U33: Match making
You will often want to search files to find lines that match a certain pattern. The Unix
command grep does this (and much more). You might already know that FASTA files
(used frequently in bioinformatics) have a simple format: one header line which must
start with a '>' character, followed by a DNA or protein sequence on subsequent lines.
To find only those header lines in a FASTA file, we can use grep, which just requires you
specify a pattern to search for, and one or more files to search:

$ cd Data/Arabidopsis/
$ grep ">" intron_IME_data.fasta

>AT1G68260.1_i1_204_CDS
>AT1G68260.1_i2_457_CDS
>AT1G68260.1_i3_1286_CDS
>AT1G68260.1_i4_1464_CDS
...

This will produce lots of output which will flood past your screen. If you ever want to stop
a program running in Unix, you can type Control+C (this sends an interrupt signal which
should stop most Unix programs). The grep command has many different command-line
options (type man grep to see them all), and one common option is to get grep to show
lines that don't match your input pattern. You can do this with the -v option and in this
example we are seeing just the sequence part of the FASTA file.

$ grep -v ">" intron_IME_data.fasta

GTATACACATCTCTCTACTTTCATATTTTGCATCTCTAACGAAATCGGATTCCGTCGTTG
TGAAATTGAGTTTTCGGATTCAGTGTTGTCGAGATTCTATATCTGATTCAGTGATCTAAT
GATTCTGATTGAAAATCTTCGCTATTGTACAG
GTTAGTTTTCAATGTTGCTGCTTCTGATTGTTGAAAGTGTTCATACATTTGTGAATTTAG
TTGATAAAATCTGAACTCTGCATGATCAAAGTTACTTCTTTACTTAGTTTGACAGGGACT
TTTTTTGTGAATGTGGTTGAGTAGAATTTAGGGCTTTGGATTAAATGTGACAAGATTTTG
...

Unix and Perl Primer for Biologists

38

http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Grep

U34: Your first ever Unix pipe
By now, you might be getting a bit fed up of waiting for the grep command to finish, or
you might want a cleaner way of controlling things without having to reach for Ctrl-C.
Ideally, you might want to look at the output from any command in a controlled manner,
i.e. you might want to use a Unix program like less to view the output.

This is very easy to do in Unix, you can send the output from any command to any other
Unix program (as long as the second program accepts input of some sort). We do this
by using what is known as a pipe. This is implemented using the '|' character (which is a
character which always seems to be on different keys depending on the keyboard that
you are using). Think of the pipe as simply connecting two Unix programs. In this next
example we send the output from grep down a pipe to the less program. Letʼs imagine
that we just want to see lines in the input file which contain the pattern "ATGTGA" (a
potential start and stop codon combined):

$ grep "ATGTGA" intron_IME_data.fasta | less

TTTTTTGTGAATGTGGTTGAGTAGAATTTAGGGCTTTGGATTAAATGTGACAAGATTTTG
CTGAATGTGACTGGAAGAATGAAATGTGTTAAGATCTTGTTCGTTAAGTTTAGAGTCTTG
GGTGGAATGAATTTATGTATCATGTGATAGCTGTTGCATTACAAGATGTAATTTTGCAAA
GTCTATGTGATGGCCATAGCCCATAGTGACTGATAGCTCCTTACTTTGTTTTTTTTTTCT
TTACTTGCAAAATTCCATGTGATTTTTTATATTACTTTGAAGAATTTTATAATATATTTT
TTGCATCAAGATATGTGACATCTTCAAAAAGATAACTTGTGAGAAGACAATTATAATATG
GTAACTTATTTATTGATTGAATCAGTAACTGTATTGTTATCATGATTTGTGAATATGTGA
AATCTTTGTGGTGGGTCTACGATATGAGCTGTCAATATATTTTTGTTTATACATGTGATC
GTATGTGAGCAAACGATGTCTCGTTTTCTCTCTCTCAATGATCAAGCACCTAACTTAAAT
...

Notice that you still have control of your output as you are now in the less program. If
you press the forward slash (/) key in less, you can then specify a search pattern. Type
ATGTGA after the slash and press enter. The less program will highlight the location of
these matches on each line. Note that grep matches patterns on a per line basis. So if
one line ended ATG and the next line started TGA, then grep would not find it.

Any time you run a Unix program or command that
outputs a lot of text to the screen, you can instead

pipe that output into the less program

Unix and Perl Primer for Biologists

39

http://en.wikipedia.org/wiki/Pipe_(Unix)
http://en.wikipedia.org/wiki/Pipe_(Unix)

U35: Heads and tails
Sometimes we do not want to use less to see all of the output from a command like
grep. We might just want to see a few lines to get a feeling for what the output looks
like, or just check that our program (or Unix command) is working properly. There are
two useful Unix commands for doing this: head and tail. These commands show (by
default) the first or last 10 lines of a file (though it is easy to specify more or fewer lines
of output). So now, letʼs look for another pattern which might be in all the sequence files
in the directory. If we didn't know whether the DNA/protein sequence in a FASTA files
was in upper-case or lower-case letters, then we could use the -i option of grep which
'ignores' case when searching:

$ grep -i ACGTC * | head
At_proteins.fasta:TYRSPRCNSAVCSRAGSIACGTCFSPPRPGCSNNTCGAFPDNSITGWATSGEFALDVVS
IQSTNGSNPGRFVKIPNLIFS
At_proteins.fasta:FRRYGHYISSDVFRRFKGSNGNFKESLTGYAKGMLSLYEAAHLGTTKDYILQEALSFTS
SHLESLAACGTCPPHLSVHIQ
At_proteins.fasta:MAISKALIASLLISLLVLQLVQADVENSQKKNGYAKKIDCGSACVARCRLSRRPRLCHR
ACGTCCYRCNCVPPGTYGNYD
At_proteins.fasta:MAVFRVLLASLLISLLVLDFVHADMVTSNDAPKIDCNSRCQERCSLSSRPNLCHRACGT
CCARCNCVAPGTSGNYDKCPC
chr1.fasta:TGTCTACTGATTTGATGTTTTCCTAAACTGTTGATTCGTTTCAGGTCAACCAATCACGTCAACGAA
ATTCAGGATCTTA
chr1.fasta:TATGCTGCAAGTACCAGTCAATTTTAGTATGGGAAACTATAAACATGTATAATCAACCAATGAACA
CGTCAATAACCTA
chr1.fasta:TTGAACAGCTTAGGGTGAAAATTATGATCCGTAGAGACAGCATTTAAAAGTTCCTTACGTCCACGT
AAAATAATATATC
chr1.fasta:GGGATCACGAGTCTGTTGAGTTTTCCGACGTCGCTTGGTGTTACCACTTTGTCGAACATGTGTTCT
TTCTCCGGAGGTG
chr1.fasta:CTGCAAAGGCCTACCTGTTTGTCCCTGTTACTGACAATACGTCTATGGAACCCATAAAAGGGATCA
ACTGGGAATTGGT
chr1.fasta:ACGTCGAAGGGGGTAAGATTGCAGCTAATCATTTGATGAAATGGATTGGGATTCACGTGGAGGATG
ATCCTGATGAAGT

The * character acts as a wildcard meaning 'search all files in the current directory' and
the head command restricts the total amount of output to 10 lines. Notice that the output
also includes the name of the file containing the matching pattern. In this case, the grep
command finds the ACGTC pattern in four protein sequences and several lines of the
the chromosome 1 DNA sequence (we donʼt know how many exactly because the head
command is only giving us ten lines of output).

Unix and Perl Primer for Biologists

40

http://en.wikipedia.org/wiki/Head_(Unix)
http://en.wikipedia.org/wiki/Head_(Unix)
http://en.wikipedia.org/wiki/Tail_(Unix)
http://en.wikipedia.org/wiki/Tail_(Unix)

U36: Getting fancy with regular expressions
A concept that is supported by many Unix programs and also by most programming
languages (including Perl) is that of using regular expressions. These allow you to
specify search patterns which are quite complex and really help restrict the huge
amount of data that you might be searching for to some very specific lines of output.
E.g. you might want to find lines that start with an 'ATG' and finish with 'TGA' but which
have at least three AC dinucleotides in the middle:

$ grep "^ATG.*ACACAC.*TGA$" chr1.fasta

ATGAACCTTGTACTTCACCGGGTGCCCTCAAAGACGTTCTGCTCGGAAGGTTTGTCTTACACACTTTGATGTCAAAT
GA
ATGATAGCTCAACCACGAAATGTCATTACCTGAAACCCTTAAACACACTCTACCTCAAACTTACTGGTAAAAACATT
GA
ATGCATACCTCAGTTGCATCCCGGCGCAGGGCAAGCATACCCGCTTCAACACACACTGCTTTGAGTTGAGCTCCATT
GA

Youʼll learn more about regular expressions when you learn Perl. The '^' character is a
special character that tells grep to only match a pattern if it occurs at the start of a line.
Similarly, the '$' tells grep to match patterns that occur at the end of the line.

Task U36.1: The '.' and '*' characters are also special characters that form part of the
regular expression. Try to understand how the following patterns all differ. Try using
each of these these patterns with grep against any one of the sequence files. Can you
predict which of the five patterns will generate the most matches?

ACGT
AC.GT
AC*GT
AC.*GT

Try searching for the following patterns to ensure you understand what . and * are
doing:

A...T
AG*T
A*C*G*T*

The asterisk in a regular expression is similar to, but NOT
the same, as the other asterisks that we have seen so far.

An asterisk in a regular expression means:
ʻmatch zero or more of the preceding character or patternʼ

Unix and Perl Primer for Biologists

41

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

U37: Counting with grep
Rather than showing you the lines that match a certain pattern, grep can also just give
you a count of how many lines match. This is one of the frequently used grep options.
Running grep -c simply counts how many lines match the specified pattern. It doesn't
show you the lines themselves, just a number:
!
$ grep -c i2 intron_IME_data.fasta
9785

Task U37.1: Count how many times each pattern from TaskU31.1 occurs in all of the
sequence files (specifying *.fasta will allow you to specify all sequence files).

U38: Regular expressions in less
You have seen already how you can use less to view files, and also to search for
patterns. If you are viewing a file with less, you can type a forward-slash / character,
and this allows you to then specify a pattern and it will then search for (and highlight) all
matches to that pattern. Technically it is searching forward from whatever point you are
at in the file. You can also type a question-mark ? and less will allow you to search
backwards. The real bonus is that the patterns you specify can be regular expressions.

Task U38.1: Try viewing a sequence file with less and then searching for a pattern such
as ATCG.*TAG$. This should make it easier to see exactly where your regular expression
pattern matches. After typing a forward-slash (or a question-mark), you can press the up
and down arrows to select previous searches.

Unix and Perl Primer for Biologists

42

U39: Let me transl(iter)ate that for you
We have seen that these sequence files contain upper-case characters. What if we
wanted to turn them into lower-case characters (because maybe another bioinformatics
program will only work if they are lower-case)? The Unix command tr (short for
transliterate) does just this, it takes one range of characters that you specify and
changes them into another range of characters:

$ head -n 2 chr1.fasta

>Chr1 dumped from ADB: Mar/14/08 12:28; last updated: 2007-12-20
CCCTAAACCCTAAACCCTAAACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAATCTTTAAATCCTACATCC
AT

$ head -n 2 chr1.fasta | tr 'A-Z' 'a-z'

>chr1 dumped from adb: mar/14/08 12:28; last updated: 2007-12-20
ccctaaaccctaaaccctaaaccctaaacctctgaatccttaatccctaaatccctaaatctttaaatcctacatcc
at

U40: Thatʼs what she sed
The tr command letʼs you change a range of characters into another range. But what if
you wanted to change a particular pattern into something completely different? Unix has
a very powerful command called sed that is capable of performing a variety of text
manipulations. Letʼs assume that you want to change the way the FASTA header looks:

$ head -n 1 chr1.fasta
>Chr1 dumped from ADB: Mar/14/08 12:28; last updated: 2007-12-20

$ head -n 1 chr1.fasta | sed 's/Chr1/Chromosome 1/'
>Chromosome 1 dumped from ADB: Mar/14/08 12:28; last updated: 2007-12-20

The 's' part of the sed command puts sed in 'substitute' mode, where you specify one
pattern (between the first two forward slashes) to be replaced by another pattern
(specified between the second set of forward slashes). Note that this doesnʼt actually
change the contents of the file, it just changes the screen output from the previous
command in the pipe. We will learn later on how to send the output from a command
into a new file.

Unix and Perl Primer for Biologists

43

http://en.wikipedia.org/wiki/Tr_(Unix)
http://en.wikipedia.org/wiki/Tr_(Unix)
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Sed

U41: Word up
For this section we want to work with a different type of file. It is sometimes good to get
a feeling for how large a file is before you start running lots of commands against it. The
ls -l command will tell you how big a file is, but for many purposes it is often more
desirable to know how many 'lines' it has. That is because many Unix commands like
grep and sed work on a line by line basis. Fortunately, there is a simple Unix command
called wc (word count) that does this:

$ cd Data/Arabidopsis/
$ wc At_genes.gff
 531497 4783473 39322356 At_genes.gff

The three numbers in the output above count the number of lines, words and bytes in
the specified file(s). If we had run wc -l, the 'l' option would have shown us just the line
count.

U42: GFF and the art of redirection
The Arabidopsis directory also contains a GFF file. This is a common file format in
bioinformatics and GFF files are used to describe the location of various features on a
DNA sequence. Features can be exons, genes, binding sites etc, and the sequence can
be a single gene or (more commonly) an entire chromosome.

This GFF file describes of all of the gene-related features from chromosome I of
A. thaliana. We want to play around with some of this data, but don't need all of the
file....just 10,000 lines will do (rather than the ~500,000 lines in the original). We will
create a new (smaller) file that contains a subset of the original:

$ head -n 10000 At_genes.gff > At_genes_subset.gff
$ ls -l
total 195360
-rwxrwxrwx 1 keith staff 39322356 Jul 9 15:02 At_genes.gff
-rwxrwxrwx 1 keith staff 705370 Jul 10 13:33 At_genes_subset.gff
-rwxrwxrwx 1 keith staff 17836225 Oct 9 2008 At_proteins.fasta
-rwxrwxrwx 1 keith staff 30817851 May 7 2008 chr1.fasta
-rwxrwxrwx 1 keith staff 11330285 Jul 10 11:11 intron_IME_data.fasta

This step introduces a new concept. Up till now we have sent the output of any
command to the screen (this is the default behavior of Unix commands), or through a
pipe to another program. Sometimes you just want to redirect the output into an actual
file, and that is what the '>' symbol is doing, it acts as one of three redirection operators
in Unix.

Unix and Perl Primer for Biologists

44

http://en.wikipedia.org/wiki/Wc_(Unix)
http://en.wikipedia.org/wiki/Wc_(Unix)
http://en.wikipedia.org/wiki/Redirection_(Unix)
http://en.wikipedia.org/wiki/Redirection_(Unix)

As already mentioned, the GFF file that we are working with is a standard file format in
bioinformatics. For now, all you really need to know is that every GFF file has 9 fields,
each separated with a tab character. There should always be some text at every
position (even if it is just a '.' character). The last field often is used to store a lot of text.

U43: Not just a pipe dream
The 2nd and/or 3rd fields of a GFF file are usually used to describe some sort of
biological feature. We might be interested in seeing how many different features are in
our file:

$ cut -f 3 At_genes_subset.gff | sort | uniq

CDS
chromosome
exon
five_prime_UTR
gene
mRNA
miRNA
ncRNA
protein
pseudogene
pseudogenic_exon
pseudogenic_transcript
snoRNA
tRNA
three_prime_UTR
transposable_element_gene

In this example, we combine three separate Unix commands together in one go. Letʼs
break it down (it can be useful to just run each command one at at time to see how each
additional command is modifying the preceding output):

1) the cut command first takes the At_genes_subset.gff file and ʻcutsʼ out just the 3rd
column (as specified by the -f option). Luckily, the default behavior for the cut command
is to split text files into columns based on tab characters (if the columns were separated
by another character such as a comma then we would need to use another command
line option to specify the comma).
2) The sort command takes the output of the cut command and sorts it alphanumerically
3) The uniq command (in its default format) only keeps lines which are unique to the
output (otherwise you would see thousands of 'curated', ' Coding_transcript' etc.)

Unix and Perl Primer for Biologists

45

http://www.sanger.ac.uk/Software/formats/GFF/
http://www.sanger.ac.uk/Software/formats/GFF/
http://en.wikipedia.org/wiki/Cut_(Unix)
http://en.wikipedia.org/wiki/Cut_(Unix)
http://en.wikipedia.org/wiki/Sort_(Unix)
http://en.wikipedia.org/wiki/Sort_(Unix)
http://en.wikipedia.org/wiki/Uniq_(Unix)
http://en.wikipedia.org/wiki/Uniq_(Unix)

Now letʼs imagine that you might want to find which features start earliest in the
chromosome sequence. The start coordinate of features is always specified by column
4 of the GFF file, so:

$ cut -f 3,4 At_genes_subset.gff | sort -n -k 2 | head

chromosome	 1
exon	 3631
five_prime_UTR	 3631
gene	 3631
mRNA	 3631
CDS	 3760
protein	 3760
CDS	 3996
exon	 3996
CDS	 4486

Here we first cut out just two columns of interest (3 & 4) from the GFF file. The -f option
of the cut command lets us specify which columns we want to remove. The output is
then sorted with the sort command. By default, sort will sort alphanumerically, rather
than numerically, so we use the -n option to specify that we want to sort numerically. We
have two columns of output at this point and we could sort based on either column. The
ʻ-k 2ʼ specifies that we use the second column. Finally, we use the head command to get
just the 10 rows of output. These should be lines from the GFF file that have the lowest
starting coordinate.

U44: The end of the line
When you press the return/enter key on your keyboard you may think that this causes
the same effect no matter what computer you are using. The visible effects of hitting this
key are indeed the same...if you are in a word processor or text editor, then your cursor
will move down one line. However, behind the scenes pressing enter will generate one
of two different events (depending on what computer you are using). Technically
speaking, pressing enter generates a newline character which is represented internally
by either a line feed or carriage return character (actually, Windows uses a combination
of both to represent a newline). If this is all sounding confusing, well it is, and it is even
more complex than I am revealing here.

The relevance of this to Unix is that you will sometimes receive a text file from someone
else which looks fine on their computer, but looks unreadable in the Unix text viewer
that you are using. In Unix (and in Perl and other programming languages) the patterns
\n and \r can both be used to denote newlines. A common fix for this requires
substituting \r for \n.

Unix and Perl Primer for Biologists

46

http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline

Use less to look at the Data/Misc/excel_data.csv file. This is a simple 4-line file that
was exported from a Mac version of Microsoft Excel. You should see that if you use
less, then this appears as one line with the newlines replaced with ^M characters. You
can convert these carriage returns into Unix-friendly line-feed characters by using the tr
command like so:

$ cd Data/Misc
$ tr '\r' '\n' < excel_data.csv
sequence 1,acacagagag
sequence 2,acacaggggaaa
sequence 3,ttcacagaga
sequence 4,cacaccaaacac

This will convert the characters but not save the resulting output, if you wanted to send
this output to a new file you will have to use a second redirect operator:

$ tr '\r' '\n' < excel_data.csv > excel_data_formatted.csv

U45: This one goes to 11
Finally, let's parse the Arabidopsis intron_IME_data.fasta file to see if we can extract a
subset of sequences that match criteria based on something in the FASTA header line.
Every intron sequence in this file has a header line that contains the following pieces of
information:

• gene name
• intron position in gene
• distance of intron from transcription start site (TSS)
• type of sequence that intron is located in (either CDS or UTR)

Let's say that we want to extract five sequences from this file that are: a) from first
introns, b) in the 5' UTR, and c) closest to the TSS. Therefore we will need to look for
FASTA headers with an 'i1' part (first intron) and also a '5UTR' part.

We can use grep to find header lines that match these terms, but this will not let us
extract the associated sequences. The distance to the TSS is the number in the FASTA
header which comes after the intron position. So we want to find the five introns which
have the lowest values.

Before I show you one way of doing this in Unix, think for a moment how you would go
about this if you didn't know any Unix or Perl...would it even be something you could do
without manually going through a text file and selecting each sequence by eye? Note
that this Unix command is so long that I have had to wrap it across two lines, when you
type this, keep it on just one line:

Unix and Perl Primer for Biologists

47

$ tr '\n' '@' < intron_IME_data.fasta | sed 's/>/#>/g' | tr '#' '\n' |
grep "i1_.*5UTR" | sort -nk 3 -t "_" | head -n 5 | tr '@' '\n'

>AT4G39070.1_i1_7_5UTR
GTGTGAAACCAAAACCAAAACAAGTCAATTTGGGGGCATTGAAAGCAAAGGAGAGAGTAG
CTATCAAATCAAGAAAATGAGAGGAAGGAGTTAAAAAAGACAAAGGAAACCTAAGCTGCT
TATCTATAAAGCCAACACATTATTCTTACCCTTTTGCCCACACTTATACCCCATCAACCT
CTACATACACTCACCCACATGAGTGTCTCTACATAAACACTACTATATAGTACTGGTCCA
AAGGTACAAGTTGAGGGAG

>AT5G38430.1_i1_7_5UTR
GCTTTTTGCCTCTTACGGTTCTCACTATATAAAGATGACAAAACCAATAGAAAAACAATT
AAG

>AT1G31820.1_i1_14_5UTR
GTTTGTACTTCTTTACCTCTCGTAAATGTTTAGACTTTCGTATAAGGATCCAAGAATTTA
TCTGATTGTTTTTTTTTCTTTGTTTCTTTGTGTTGATTCAG

>AT3G12670.1_i1_18_5UTR
GTAGAATTCGTAAATTTCTTCTGCTCACTTTATTGTTTCGACTCATACCCGATAATCTCT
TCTATGTTTGGTAGAGATATCTTCTCAAAGTCTTATCTTTCCTTACCGTGTTCTGTGTTT
TTTGATGATTTAG

>AT1G26930.1_i1_19_5UTR
GTATAATATGAGAGATAGACAAATGTAAAGAAAAACACAGAGAGAAAATTAGTTTAATTA
ATCTCTCAAATATATACAAATATTAAAACTTCTTCTTCTTCAATTACAATTCTCATTCTT
TTTTTCTTGTTCTTATATTGTAGTTGCAAGAAAGTTAAAAGATTTTGACTTTTCTTGTTT
CAG

That's a long command, but it does a lot. Try to break down each step and work out
what it is doing (you will need to consult the man page for some commands maybe).
Notice that I use one of the other redirect operators ('<') to read from a file. It took seven
Unix commands to do this, but these are all relatively simple Unix commands; it is the
combination of them together which makes them so powerful. One might argue that
when things get this complex with Unix that it might be easier to do it in Perl!

Unix and Perl Primer for Biologists

48

Summary
Congratulations are due if you have reached this far. If you have learnt (and
understood) all of the Unix commands so far then you probably will never need to learn
anything more in order to do a lot of productive Unix work. But keep on dipping into the
man page for all of these commands to explore them in even further detail.

The following table provides a reminder of most of the commands that we have covered
so far. If you include the three, as-yet-unmentioned, commands in the last column, then
you will probably be able to achieve >95% of everything that you will ever want to do in
Unix. The power comes from how you can use combinations of these commands.

The
absolute
basics

Basic file
control

Viewing/
creating/

editing files

Misc.
useful

commands

Power
commands

Process-
related

commands

ls mv less man uniq top

cd cp head chmod sort ps

pwd mkdir tail source cut kill

rmdir touch wc tr

rm nano curl grep

| (pipe) sed

> (write to file)

< (read from file)

Unix and Perl Primer for Biologists

49

Perl

Your programming environment
For this course, you will be using two applications, a text editor and a terminal. You
should already be familiar with the Terminal application from the Unix lesson. If you are
using a Mac then we recommend using a (Mac-specific) text editor called Smultron. A
copy of this is provided in /Volumes/USB/Unix_and_Perl_course/Applications.

Smultron is a typical programmer's text editor. It has several useful features such as
syntax highlighting, automatic indentation, line numbering, and advanced search &
replace. There are many good text editors available for Mac, Unix, and Windows.
Smultron is better than most, and it is free. Windows users should consider Notepad++.

Remember to type:
ʻsource /Volumes/USB/Unix_and_Perl_course/.profileʼ

at the beginning of every session

Unix and Perl Primer for Biologists

50

http://notepad-plus.sourceforge.net/uk/site.htm
http://notepad-plus.sourceforge.net/uk/site.htm

Saving Perl scripts
Every time you write a script you should save it in the Unix_and_Perl_course/Code
directory. This is because we have specified this directory to be part of your Unix PATH.
If you keep your Perl scripts here then you can call them from any directory.

If you are new to Macs then it can be confusing to find out how to save a file to specific
directory. When you click on the Save button in Smultron the default is to offer to save
the file on the Desktop. Click on the blue disclosure triangle and you will then be able to
more easily find the correct directory in which to save the script.

Select the
USB drive

Unix and Perl Primer for Biologists

51

Here is a handy Mac tip that will apply to Smultron and also to any other Mac graphical
application that allows you to edit and save text. When you first open a new empty
document, the program is — as yet — unsaved.

Now notice what happens when you start entering text into the main Smultron window.
The window ʻcloseʼ button (the red circle in the top left of the window), now has a small
black dot inside it.

This is meant to serve as a reminder that your file is still unsaved. As soon as you click
the ʻSaveʼ button, this black dot will disappear. From time to time you will have problems
with your Perl scripts, and this might simply be because you have not saved any
changes that you have made.

Unix and Perl Primer for Biologists

52

P1. Hello World
The first program you write in any language is always "Hello World". The purpose of this
program is to demonstrate that the programming environment is working, so the
program is as simple as possible.

Task P1.1: Enter the text below into your text editor, but do not include the numbers.
The numbers are there only so we can reference specific lines.

1. # helloworld.pl by _insert_your_name_here_
2. print("Hello World!\n");

Line 1 has a # sign on it. When Perl sees a # sign, everything that follows on that line is
considered a comment. Programmers use comments to describe what a program does,
who wrote the program, what needs to be fixed, etc. It's a good idea to put comments in
your code, especially as they grow larger.

Line 2 is the only line of this program that does anything. The print() function outputs
its arguments to your terminal. In this case, there is only one argument, the text "Hello
World\n". The funny \n at the end is a newline character, which is like a carriage return.
Most of the time, Perl statements end with a semicolon. This is like a period at the end
of a sentence. The last statement in a block does not require a semicolon. We will revisit
this in a later lesson.

Save the program as ʻhelloworld.plʼ. To run the program, type the following in the
terminal and hit return (make sure you are in the correct directory).

	 perl helloworld.pl

This will run the perl program and tell it to execute the instructions of the helloworld.pl
file. If it worked, great. If you received a message like the one below, you may have
forgotten to save the file, misspelled the file name, or saved the file to someplace
unintended. Always use tab-completion to prevent spelling mistakes. Always save your
programs to the Unix_and_Perl_course/Code directory (for now anyway).

	 Can't open perl script "helloworld.pl": No such file or directory

Task P1.2: Modify the program to output some other text, for example the date. Add a
few more print statements and experiment with what happens if you omit or add extra
newlines.

Task P1.3: Make a few deleterious mutations to your program. For example, leave off
the semicolon or one of the parentheses. Observe the error messages. One of the most
important aspects of programming is debugging. Probably more time is spent
debugging than programming, so it's a good idea to start recognizing errors now.

Unix and Perl Primer for Biologists

53

P2. Scalar variables
Variables hold data. In Perl, the main variable type is called a scalar variable. A scalar
holds one thing. This thing could be a number, some text, or an entire genome. We will
see other data types later. You can always tell a scalar variable because it has a $ on
the front (the dollar sign is a mnemonic for scalar). For example, a variable might be
named $x. When speaking aloud, we do not say "dollar x". We just call it "x".

Task P2.1: Create a new blank text document. Enter the text below and save this
program as scalar.pl in your Code directory.

1. #!/usr/bin/perl
2. # scalar.pl by _insert_your_name_here_
3. use warnings;
4.
5. $x = 3;
6. print($x, "\n");

Line 1 will appear at the top of every Perl script that we write from now on. This line of
code is very similar to the line that appeared at the top of our Unix shell script. It lets
Unix know that the Perl program (located at /usr/bin/perl) can read this file and run the
remaining code inside it.

Line 2 is simply a comment. You should always include a few comments in your
programs.

Line 3 is another line that we will add to every script from now on. This line effectively
tells Perl that we would like to be warned if we start writing certain types of ʻbadʼ code.
This is a good thing! We will return to this later on.

Line 4 is deliberately blank. You should use spaces and blank lines to improve the
readability of your code. In this case we are separating the first three lines of the script
(which donʼt actually calculate anything) from the rest.

Lines 5 is a variable assignment. The variable $x gets the value of 3

Line 6 prints the value of $x and then print a newline. As you can see, the print()
function can take multiple arguments separated by commas.

Run the program by typing the line below in your terminal. Observe the output and go
back through the code and line descriptions to make sure you understand everything.

	 scalar.pl

Unix and Perl Primer for Biologists

54

The addition of #!/usr/bin/perl to the script means that we no longer have to type:
#
perl scalar.pl

What is actually happening here is that we are making it clear that these text files
contain instructions written in Perl. The line that we add tells Unix that it should find a
program called perl in the /usr/bin directory and that program should be capable of
making sense of your Perl commands.

Now try adding the following lines to your program.

7. $s = "something";
8. print($s, "\n");
9. print("$s\n");

Line 7 is another variable assignment, but unlike $x, our new variable $s gets a
character string, which is just another term for text.

Lines 8–9 print our new variable $s and then print a newline character.

Save the script and run it again. You should see that although lines 8–9 are different
they produce exactly the same output. The print function can print a list of items (all
separated by commas), but it often makes more sense to print just one thing instead. It
would have been possible to rewrite our very first Perl script with the following:

print("H","e","l","l","o"," ","W","o","r","l","d","!","\n");

Hopefully you will agree that printing this phrase as one string and not thirteen separate
strings is a lot easier on the eye. Now add the following line to your program, and run it
again.

10. print "$s\n";

Line 10 calls the print function without parentheses. You do not have to use parentheses
for Perl functions, but they are often useful to keep a line organized. In most cases, you
will see the print function without parentheses. Now add the final two lines to the
program:

11. print '$x $s\n';
12. print "$x $s\n";

Line 11 puts the two variables between single quotes. Any text between single quotes
will print exactly as shown. This also means that \n loses its special meaning as a
newline character. In contrast, strings between double quotes will undergo variable

Unix and Perl Primer for Biologists

55

interpolation. This means that variables are always expanded inside double quotes, and
print will always show what those variables contain.

Task P2.2: Mutate your program. Delete a $ and see what error message you get.

Task P2.3: Modify the program by changing the contents of the variables. Observe the
output. Try experimenting by creating more variables.
Variables summary

You can use (almost) anything for your variable names, though you should try to use
names which are descriptive and not too long. You should also use lower case names
for your variables. This is not essential though. Which of the following is the best
variable name for a variable that will store a DNA sequence?

$x = "ATGCAGTGA"; # $x is not a good choice
$dna_sequence_variable; # also not a good choice, too long
$sequence = "ATGCAGTGA"; # $sequence is better
$dna = "ATGCAGTAGA"; # $dna is even better

It is perfectly fine to give a variable the same name as an existing function in Perl
though this might be confusing. I.e. a variable named $print might look a bit too similar
to the print() function. Sometimes though the choice of variable name is obvious:
$length is often a good name for variables that contain the length of something, even
though there is also a length() function in Perl (which we will learn about later on).

As shown in the example above, variable names can contain underscore characters to
separate ʻwordsʼ. This is often useful and helps make things easier to understand. E.g.

$first_name = "Keith";
$second_name = "Bradnam";

Finally, you should be aware that (with a few exceptions) you can use spaces to make
things clearer (or less clear if you so desire). The following lines are all treated by Perl in
exactly the same way:

$dna = "ATGCAGTGA"; # one space either side of the ‘=’ sign
$dna="ATGCAGTGA"; # no spaces either side of the ‘=’ sign
$dna = "ATGCAGTGA"; # lots of spaces!

Unix and Perl Primer for Biologists

56

P3. Safer programming: use strict
Task 3.1: Create the following program, but donʼt run it yet. Instead try to to predict what
it will do. Knowing how a program should work (before you run it) is a good
programming skill to develop. If you donʼt understand what a program should be doing,
then you will probably not realize if it is doing something wrong.

1. #!/usr/bin/perl
2. # strict.pl by _insert_your_name_here_
3. use strict; use warnings;
4.
5. $pi = 3.14;
6. print "pi = $pi\n";
7.
8. $pi = 3.141593;
9. print "pi = $pi\n";

You hopefully noticed that this program introduces another new concept; line 3 includes
another usage statement: use strict; (in addition to use warnings;). Up till now we
have ended each line of Perl code with a semi-colon, but there are times when it is
simpler to put two lines of Perl code into one line in an editor. Perl will still treat these as
two separate lines of code.

Telling Perl to use strict means that Perl will insist your script is written in a certain
way which is widely considered to be a ʻbetterʼ way of writing code. At this point it is not
important to go into the details of what exactly use strict is doing. Just accept our
word that including a use strict; use warnings; line in every script that you write is a
good thing to do (we will return to these issues later).

Task 3.2: Now try running the script. You should hopefully see the following errors:

Global symbol "$pi" requires explicit package name at strict.pl line 5.
Global symbol "$pi" requires explicit package name at strict.pl line 6.
Global symbol "$pi" requires explicit package name at strict.pl line 8.
Global symbol "$pi" requires explicit package name at strict.pl line 9.
Execution of strict.pl aborted due to compilation errors.

We see one error message for each use of the $pi variable in the script. Now see what
happens if you remove the use strict; statement and re-run the script. It should now
work. What is happening here? When we tell Perl that we want to use strict; Perl will
first check the code and one of the things it will do is to look at how variables are
declared. In Perl, when we first introduce any variable we can optionally describe
whether they are available to all parts of a program or not. However, if we turn on use
strict; it becomes mandatory to say whether the variable is a local or global variable.
At this time it is not important to understand the details of this (we will return to it later

Unix and Perl Primer for Biologists

57

on), other than that we want our programs to include use strict and so we will be
making our variables local variables.

Task 3.3: Make sure that use strict; is back in your program. Now change line 5
of the program to the following and run your script again (it should now work and should
not produce any errors):

5. my $pi = 3.14;

We are now declaring the $pi variable using the word 'my'. This makes the variable a
local variable and we will now be doing this most of the time that we introduce any new
variable. It might help to think of the my word as reading as 'let'. At this point you are
probably thinking that including use strict; in your programs is making things more
complex. That is true but the benefits of including use strict; outweigh the costs
associated with it.

Task 3.4: The other point of this programming exercise is to introduce you to the simple
fact you can reassign variables to different values or strings. Try declaring a new
variable and and assign it a value. Add two more lines to change that value and print it
out again.

Unix and Perl Primer for Biologists

58

P4. Math
Perl, like most programming languages supports a variety of mathematical operators
and functions. Let's experiment with some of these.

Task P4.1: Write the program below, save it as math.pl, and then run it. But wait, this
time we are going to take a slightly different strategy. The program is getting longer. If
you type the whole thing and have a lot of errors, it will become difficult to debug. So
instead, write only a few lines, and then save, run, and observe the output. Debug if
necessary. Try to check that your program is working every few lines. As you get more
experience, you will gain skill and confidence and not need to check as frequently.

1. #!/usr/bin/perl
2. # math.pl
3. use strict; use warnings;
4.
5. my $x = 3;
6. my $y = 2;
7. print "$x plus $y is ", $x + $y, "\n";
8. print "$x minus $y is ", $x - $y, "\n";
9. print "$x times $y is ", $x * $y, "\n";
10. print "$x divided by $y is ", $x / $y, "\n";
11. print "$x modulo $y is ", $x % $y, "\n";
12. print "$x to the power of $y is ", $x ** $y, "\n";

Task P4.2: In addition to the mathematical operators we've just seen, there are a
number of built-in numeric functions: e.g. abs(), int(), log(), rand(), sin(). Add
the following lines to the program, run it, and observe the output.

13. print "the absolute value of -$x is ", abs(-$x), "\n";
14. print "the natural log of $x is ", log($x), "\n";
15. print "the square root of $x is ", sqrt($x), "\n";
16. print "the sin of $x is ", sin($x), "\n";
17. print "a random number up to $y is ", rand($y), "\n";
18. print "a random integer up to $x x $y is ", int(rand($x * $y)), "\n";

Line 18 could have been written as int rand $x * $y. This is another example where
you can omit parentheses if you like. But just because you can doesn't mean you
should.

Unix and Perl Primer for Biologists

59

Task P4.3: In the examples above, the print() function outputs text as well as the
actual mathematical operations. This is fairly uncommon in real programming.
Generally, we want to make some computation, store that value, and do more
computations. To store values, we need to create a new variable that will hold the
contents.

19. my $z = ($x + $y) / 2;
20. print "$z\n";

Task P4.4: In this next exercise, you will build a simple calculator that calculates X to
the power of Y. Instead of assigning the variables inside the code, we will let the user
input the values without editing the file. In general, this is how programs should work.
Once written, they can be used without editing the source code.

1. #!/usr/bin/perl
2. # pow.pl
3. use strict; use warnings;
4.
5. my ($x, $y) = @ARGV;
6. print $x ** $y, "\n";

Line 5 has an unfamiliar construct. @ARGV is list of values from the command line. We will
discuss lists and arrays in greater detail later. For now, just accept that the values from
the command line will be contained in $x and $y. For example, if you type the line below
in the terminal, when the program runs, $x will contain 3.14 and $y will contain 2.718.

	 pow.pl 3.14 2.718

Task 4.5: Let's make one more calculator for fun. This one will compute the factorial of a
number. Factorials are usually computed with some kind of a loop (we will talk a lot
about loops later). Here is an alternate method that provides a reasonable
approximation. Unlike the true factorial, this method can use non-integers. Lines 7–10
have are indented with tabs to make it easier to read.

1. #!/usr/bin/perl
2. # stirling.pl (Stirling's approximation to the factorial)
3. use strict; use warnings;
4.
5. my ($n) = (@ARGV);
6. my $ln_factorial =
7. (0.5 * log(2 * 3.14159265358979))
8. + ($n + 0.5) * log($n)
9. - $n + 1 / (12 * $n)
10. - 1 / (360 * ($n ** 3));
11. print 2.71828 ** $ln_factorial, "\n";

Unix and Perl Primer for Biologists

60

Try it out:

	 stirling.pl 5
	 stirling.pl 7.1

Operator Precedence

Let's quickly discuss operator precedence. Some operators have higher precedence
than others. We're used to seeing this in math where multiplication and division come
before addition and subtraction: 3 + 2 * 5 = 13. If you want to force addition before
multiplication, you can do this as (3 + 2) * 5 = 25. Perl has a lot of operators in addition
to the mathematical operators and there are a lot of precedence rules. Don't bother
memorizing them. The universal precedence rule is this: multiplication comes before
addition, use parentheses for everything else.

Unix and Perl Primer for Biologists

61

P5. Conditional statements
One of the most basic foundations of programming is the conditional statement. This is
simply: if condition then do something, otherwise do something else. The condition is
some kind of true-false statement.

Task P5.1: In the following program, note that equality is tested with two equals signs!
One of the most common errors of novice programmers is using a single equals sign.

1. #!/usr/bin/perl
2. # conditional.pl
3. use strict; use warnings;
4.
5. my ($x, $y) = @ARGV;
6. if ($x == $y) {
7. print "equal\n";
8. } else {
9. print "not equal\n";
10. }

Did you notice how the print statements on lines 7 and 9 are indented? This is no
accident! It shows the logical hierarchy. The spacing is achieved by using a tab
character. Many code editors will be smart enough to put tabs in for you automatically.

Numerical comparison operators in Perl

We have just seen the == operator, here are all the ways of comparing two numbers:

Operator Meaning Example
== equal to if ($x == $y)
!= not equal to if ($x != $y)
> greater than if ($x > $y)
< less than if ($x < $y)
>= greater than or equal to if ($x >= $y)
<= less than or equal to if ($x <= $y)
<=> comparison if ($x <=> $y)

Indentation and block structure

In general, all the statements that are conditional on some other statement are indented
with a tab character. You can have conditional statements inside other conditional
statements, in which case you will have multiple levels of indentation. Is this necessary?
Yes and no. It is necessary to aid readability, but it is not necessary to get your program
to run. Pay attention to the indentation in the example programs and follow them

Unix and Perl Primer for Biologists

62

closely. http://en.wikipedia.org/wiki/Indent_style contains a good description of
indentation styles. Feel free to choose one of those, but do not make up your own style!
Your #1 job as a programmer is to write programs that can be easily understood by
others, and inventing new programming paradigms defeats that goal.

Task P5.2: Modify the program by changing the variables and relational operators. The
numeric relational operators are in the accompanying table. Experiment to see if you
can figure out what the <=> operator does (it is called the spaceship operator).

Task P5.3: Hierarchy is one of the most important concepts in programming. We are
used to seeing hierarchical file systems where files are inside of folders which might be
inside other folders. Programming uses the same concept. In Perl, hierarchy is shown
with tabs and curly brackets. Statements (files) are inside curly brackets (folders) which
might be inside other curly brackets (more folders).

1. #!/usr/bin/perl
2. # nested_conditional.pl
3. use strict; use warnings;
4.
5. my ($x, $y) = @ARGV;
6. if ($x > $y) {
7. print "$x is greater than $y\n";
8. if ($x < 5) {
9. print "$x is greater than $y and less than 5\n";
10. }
11. }
12. else {
13. print "$x is not greater than $y\n";
14. }

Whitespace

Indentation and white space improve readability. Consider the following legal but
confusing code which omits tabs and spaces (and even some semicolons)

	 if($x>$y){print"1\n";if($x<5){print"2\n"}}else{print"3\n"}

A program must be readable above all else. A program that works but is unreadable is
difficult to improve or maintain.

Unix and Perl Primer for Biologists

63

http://en.wikipedia.org/wiki/Indent_style
http://en.wikipedia.org/wiki/Indent_style

Task P5.4: Sometimes you want to test a series of conditions. This next example shows
you how to do this with elsif.

1. #!/usr/bin/perl
2. use strict; use warnings;
3. # elsif.pl
4.
5. my ($x) = @ARGV;
6.
7. if ($x >= 3) {
8. 	 print "x is at least as big as 3\n";
9. }
10. elsif ($x >= 2) {
11. 	 print "x is at least as big as 2, but less than 3\n";
12. }
13. elsif ($x >= 1) {
14. 	 print "x is at least as big as 1, but less than 2\n";
15. }
16. else {
17. 	 print "x is less than 1\n";
18. }

Task P5.5: For simple switches such as the above example, it is sometimes useful to
break the usual indentation rule. In the example below, note that the obligatory
semicolons have been dropped. It turns out that the last line of a block does not need to
be terminated with a semicolon precisely for this kind of code beautification. Also note
that spaces are added so that the braces line up in columns.

1. if ($x >= 3) {print "x is at least as big as 3\n"}
2. elsif ($x >= 2) {print "x is at least as big as 2, but less than 3\n"}
3. elsif ($x >= 1) {print "x is at least as big as 1, but less than 2\n"}
4. else {print "x is less than 1\n"}

Other Conditional Constructs

An alternative to if ($x != $y) is unless ($x == y). There are times when unless is
more expressive than if not. You cannot use elsif or else with an unless however.

Perl also lets you do something called post-fix notation. This allows you to put the if or
unless at the end of the statement rather than at the beginning. You can't use elsif or
else in this case, but sometimes the post-fix just reads much better. Here are two
examples:

5. print "x is less than y\n" if $x < $y;
6. print "x is less than y\n" unless $x >= $y;

Unix and Perl Primer for Biologists

64

Finally, Perl includes something called the trinary operator that lets you do very simple
if-then-else statements with just a few symbols. Consider the following statement:

7. if ($x == $y) {print "yes"}
8. else {print "no"}

This can be written more succinctly as:

9. print $x == $y ? "yes\n" : "no\n";

The trinary operator is not that commonly used, but you will see it from time to time.

Numeric Precision and Conditionals

Although Perl hides the details, numbers in a computer are generally stored either as
integer or floating point (decimal) numbers. Both ints and floats have minimum and
maximum values, and floats have limited precision. You have probably run into these
concepts with your calculator. If you keep squaring a number greater than 1.0 you will
eventually run into an overflow error. In Perl, this will happen at approximately 1e+308.
Similarly, if you repeatedly square a number less than 1.0, you will eventually reach an
underflow error. In Perl, the closest you can get to zero is approximately 1e-308. Try
some extreme values in pow.pl or stirling.pl to reach underflow and overflow.

Floating point numbers do not have the exact value you may expect. For example, 0.1
is not exactly one-tenth. Perl sometimes hides these details. Try the following code.
When you run this, you expect to see 0.3 0.3 0.0, but that's not what happens because
adding the imprecise 0.1 three times is not the same as the imprecise 0.3.

1. #!/usr/bin/perl
2. # float.pl
3. use strict; use warnings;
4.
5. my $x = 0.1 + 0.1 + 0.1;
6. my $y = 0.3;
7. print $x, "\t", $y, "\t", $x - $y, "\n"; # \t is a tab character

Since floating point numbers are approximations, you should not compare them in
conditional statements. Never ask if ($x == $y) if the values are floats because as we
have seen, 0.3 is not necessarily equal to 0.3. Instead, ask if their difference is smaller
than some acceptable threshold value.

8. my $threshold = 0.001;
9. if (abs($x - $y) < $threshold) {print "close enough\n"}

Unix and Perl Primer for Biologists

65

P6. String operators
From algebra, we are used to the idea of using variables in math. But what about
strings? Can you add, subtract, multiply, divide, and compare strings? Not exactly, but
there are analogous operations. We'll see more of this later. For now, let's just look at
some simple operators.

Task P6.1: Create the following program and run it.

1. #!/usr/bin/perl
2. # strings.pl
3. use strict; use warnings;
4.
5. my $s1 = "Hello";
6. my $s2 = "World\n";
7. my $s3 = $s1 . " " . $s2;
8. print $s3;

Line 7 introduces the concatenate operator which in Perl is represented by the dot (.)
character. This operator allows you to join two or more strings together and (optionally)
store the result in a new variable. In this case we create a new variable ($s3) which
stores the result of joining three things together ($s1, a space character " ", and $s2).
Now add the following lines to the script.

9. if ($s1 eq $s2) {print "same string\n"}
10. elsif ($s1 gt $s2) {print "$s1 is greater than $s2\n"}
11. elsif ($s1 lt $s2) {print "$s1 is less than $s2\n"}

How are these strings compared? It might make sense to compare them by length, but
that's not what is happening. They are compared by their ASCII values. So 'A' is less
than 'B' which is less than 'Z'. Similarly 'AB' is less than 'AC' and 'ABCDE' is also less
than 'AC'. Oddly, 'a' is greater than 'A'. See the wikipedia page on ASCII to see the
various values. To get the length of a string, you use the length() function.

String comparison operators in Perl

Operator Meaning Example
eq equal to if ($x eq $y)
ne not equal to if ($x ne $y)
gt greater than if ($x gt $y)
lt less than if ($x lt $y)
. concatenation $z = $x . $y

cmp comparison if ($x cmp $y)

Unix and Perl Primer for Biologists

66

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/ASCII
http://perldoc.perl.org/functions/length.html
http://perldoc.perl.org/functions/length.html

Task P6.2: Modify the program in P6.1 to experiment with different string comparison
operators. Then try comparing a number and a string using both numeric and string
comparison operators. Try using the length() function.

Task P6.3: If you are interested in ASCII values, try using the ord() and chr()
functions, which convert letters to numbers and vice-versa.

12. print ord("A"), "\n";
13. print chr(66), "\n";

Matching Operators

One of the most common tasks you may have as a programmer is to find a string within
another string. In a biological context, you might want to find a restriction site in some
DNA sequence. These kinds of operations are really easy in Perl. We are only going to
touch on a few examples here. In a few lessons we will get much more detailed.

Task P6.4: Enter the program below and observe the output. The binding operator =~
signifies that we are going to do some string manipulation next. The exact form of that
manipulation depends on the next few characters. The most common is the match
operator m//. This is used so commonly that the m can be omitted. There are also
substitution and transliteration operators. If your script is working then try changing line
6 to make the matching operator match other patterns.

1. #!/usr/bin/perl
2. # matching.pl
3. use strict; use warnings;
4.
5. my $sequence = "AACTAGCGGAATTCCGACCGT";
6. if ($sequence =~ m/GAATTC/) {print "EcoRI site found\n"}
7. else {print "no EcoRI site found\n"}

Unix and Perl Primer for Biologists

67

http://perldoc.perl.org/functions/ord.html
http://perldoc.perl.org/functions/ord.html
http://perldoc.perl.org/functions/chr.html
http://perldoc.perl.org/functions/chr.html

Matching operators in Perl

Operator Meaning Example
=~ m// match if ($s =~ m/GAATTC/)
=~ // match if ($s =~ /GAATTC/)
!~ // not match if ($s !~ m/GAATTC/)

=~ s/// substitution $s =~ s/thing/other/;
=~ tr/// transliteration $count = $s =~ tr/A/A/;

Task P6.5: Add the following lines and observe what happens when you use the
substitution operator. This behaves in a similar way to the sed command in Unix.

8. $sequence =~ s/GAATTC/gaattc/;
9. print "$sequence\n";

Now add the following lines and find out what happens to $sequence.

10. $sequence =~ s/A/adenine/;
11. print "$sequence\n";
12. $sequence =~ s/C//;
13. print "$sequence\n";

Line 12 replaces the occurrence of a C character with nothing (//), i.e. it deletes a C
character. You should have noticed though that lines 10 and 12 only replaced the first
occurrence of the matching pattern. What if you wanted to replace all occurrences? To
specify a ʻglobalʼ option (i.e. replace all occurrences), we add a letter ʻgʼ to the end of
the substitution operator:

14. $sequence =~ s/C//g; # adding ‘g’ on the end of substitution operator

This is similar to how we use command-line options in Unix, the ʻglobalʼ option modifies
the default behavior of the operator.

Task P6.6: Add the following lines to the script and try to work out what happens when
you add an 'i' to the to matching operator:

15. my $protein = "MVGGKKKTKICDKVSHEEDRISQLPEPLISEILFHLSTKDLWQSVPGLD";
16. print "Protein contains proline\n" if ($protein =~ m/p/i);

Unix and Perl Primer for Biologists

68

Task P6.7: In bioinformatics, you will sometimes be given incorrectly formatted data
files which might break your script. Therefore we often want to stop a script early on if
we detect that the input data is not what we were expecting. Add the following lines to
your script and see if you can work out what the die function is doing.

17. my $input = "ACNGTARGCCTCACACQ"; # do you know your IUPAC characters?
18. die "non-DNA character in input\n" if ($input =~ m/[efijlopqxz]/i);
19. print "We never get here\n";

It is very common to stop scripts by using the 'die ... if' syntax. There is no point letting a
script continue processing data if the data contains errors. Perl does not know about
rules of biology so you will need to remember to add suitable checks to your scripts.

The transliteration operator

The transliteration operator gets its own section as it is a little bit different to the other
matching operators. If you worked through Part 2 of the Unix lessons you may
remember that there is a tr command in Unix. The transliteration operator behaves in
the same way as this command. It takes a list of characters and changes each item in
the list to a character in a second list, though we often use it with just one thing in each
list. It automatically performs this operation on all characters in a string (so no need for
a ʻglobalʼ option).

Task P6.8: Make a new script to test the full range of abilities of the transliteration
operator. Notice how there are comments at the end of many of the lines (the hash
character ʻ#ʼ denotes the start of a comment). You donʼt have to type these comments,
but adding comments to your scripts is a good habit to get into. You will need to add
suitable print statements to this script in order for it to do anything.

1. #!/usr/bin/perl
2. # transliterate.pl
3. use strict; use warnings;
4.
5. my $text = "these are letters: abcdef, and these are numbers, 123456";
6.
7. $text =~ tr/a/b/; # changes any occurrence of ‘a’ to ‘b’
8. $text =~ tr/bs/at/; # the letter ‘b’ becomes ‘a’, and ‘s’ becomes ‘t’
9. $text =~ tr/123/321/; # 1 becomes 3, 2 stays as 2, 3 becomes 1
10. $text =~ tr/abc/ABC/; # capitalize the letters a, b, and c
11. $text =~ tr/ABC/X/; # any ‘A’, ‘B’, or ‘C’ will become a X
12. $text =~ tr/d/DE/; # incorrect use, only ‘d’ will be changed to ‘D’

On Line 5 in this script we define a string and save that to a variable ($text). Lines 7–12
then perform a series of transliterations on the text.

Unix and Perl Primer for Biologists

69

http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/die.html

Task P6.9: If you have many characters to transliterate, you can use the tr command in
a slightly different way, which you may (or may not) find easier to understand:

13. $text =~ tr [abcdefgh]
14. 	 [hgfedcba]; # semicolon is here and not on line 13

In this case we use two pairs of square brackets to denote the two range of characters,
rather than just three slashes. There are two lines of your code in the text editor, but
Perl sees this as just one line. Perl scripts can contain any amount of whitespace, and it
often helps to split one line of code into two separate lines in your editor. The following
line would be treated by Perl as exactly the same as Lines 13–14:

15. $text =~ tr[abcdefgh][hgfedcba]; # whitespace removed

Task P6.10: The transliteration operator can also be used to count how many changes
this makes. This can be extremely useful when working with DNA sequences. Add the
following lines to your script.

16. my $sequence = "AACTAGCGGAATTCCGACCGT";
17. my $g_count = ($sequence =~ tr/G/G/);
18. print "The letter G occurs $g_count times in $sequence\n";

Line 17 may appear confusing. The transliteration operator is changing the letter G to
itself, and it then assigns the result of this operation to a new variable ($g_count). So
what is happening? Perl performs the code inside the parentheses first and this
performs the transliteration. The result of the transliteration is that lots of G->G
substitutions are made which leaves $sequence unchanged. The transliteration
operator counts how many changes are made. Normally it does nothing with this count,
but if you ask Perl to assign the output of the transliteration to a variable (as in this
example), then it will store the count in that variable.

Task P6.11: Remove the parentheses from line 17. Does the script still work? This is a
case where the parentheses are not needed by Perl, but their inclusion might make your
code more understandable. If you have any code where you use the assignment
operator (=), Perl always evaluates the right-hand side of the equals sign first.

Task P6.12: Add the following line to your script and see if you can understand how to
specify a ʻrangeʼ of characters with the tr operator.

19. $sequence =~ tr/[A-Z]/[a-z]/;

Note that the square brackets in this example have a completely different meaning to
those used in lines 13–14, and line 15.

Unix and Perl Primer for Biologists

70

Project 1: DNA composition
At this point, we know enough Perl to write our first useful program. The program will
read a sequence and determine its length and composition. Unlike the various tasks
that appear in each chapter, we will not provide you the code for this project. You must
write it yourself.

Program Name

A descriptive program name helps people understand what it does. But people often
choose the name based on some other criteria. Unix program names are almost always
short and lower case to minimize typing. Bioinformatics programs tend towards
acronyms and abbreviations. Once you come up with a concept for a great program,
choosing an appropriate name can sometimes be the hardest part (only half-joking).
Feel free to choose whatever name you want for this project, but a name such as
project1.pl or dnastats.pl is better than 1337.pl.

Executable

Programs should have executable permission. This will happen automatically if they are
on your USB flash drive but you should still know how to use the Unix command chmod
to add execute permission. Your script should also have a a #! statement as the first
line.

Usage Statement

Programs should have some kind of documentation that tell other people how to use the
program. Users should not have to figure it out from the source code, especially if they
are not programmers. A simple, but useful form of documentation is the usage
statement. This is generally between 1 and 20 lines of text that informs people what the
program does and what the arguments are. Usage statements are often displayed if the
program is given no arguments. In that case, you want the program to report a little
documentation and quit (using the die function again). Here are the first few lines of
your program.

1. #!/usr/bin/perl
2. # dnastats.pl by ___
3. use strict; use warnings;
4.
5. die "usage: dnastats.pl <dna sequence>\n" unless @ARGV == 1;
6. my ($seq) = @ARGV;

Unix and Perl Primer for Biologists

71

http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/die.html

While it is possible to use the die function without printing any output, you should
always try to include a helpful statement as to why the program has stopped. It is
common to see several die statements near the start of a script as this is the point when
you should ideally check that all of the script's parameters make sense and that any
input files are present (and valid).

On line 5 the die function will be run unless the @ARGV array contains exactly one
item (remember that this array contains a list of anything you specify on the command-
line after the script name). You will often use the die function in conjunction with the ʻifʼ
operator, i.e. if something is missing, stop the script. Note that line 5 could be replaced
with the following if we wanted to make things even more explicit:

7. my $number_of_arguments = @ARGV;
8. if($number_of_arguments != 1){
9. die "usage: dnastats.pl <dna sequence>\n";
10. }

Goals of your program

Your program should read a sequence that is specified on the command line and report
the following:

• The length of the sequence
• The total number of A, C, G, and T nucleotides
• The fraction of A, C, G, and T nucleotides (i.e. %A, %C etc.)
• The GC fraction

Unix and Perl Primer for Biologists

72

P7. List context
Up till now we have only worked with single variables or values, but we often want to
work with lists of things. In Perl, if you have multiple scalar values in parentheses
separated by commas, this is known as list context (actually it's still list context even if
you have one or even zero scalar values in parentheses).

Task P7.1: Create the following short program and run it.

1. #!/usr/bin/perl
2. # list.pl
3. use strict; use warnings;
4.
5. my ($x, $y, $z) = (1, 2, 3);
6. print "x=$x y=$y z=$z\n";

The code in line 5 takes a list of three values (1, 2, 3) and assigns them to a list of
three variables ($x, $y, $z). Without using lists, we would have to have three separate
lines of code in order to declare and initialize each variable with a value.

Assignments in lists occur simultaneously. Because of this, line 7 below exchanges the
values for $x and $y.

7. ($x, $y) = ($y, $x);
8. print "x=$x y=$y\n";

Task P7.2: Exchange the value of $x and $y without using list context. This is one of
those problems that appears difficult at first, but once you see the solution, it will seem
so obvious that you can't imagine how you didn't think of it immediately.

Unix and Perl Primer for Biologists

73

P8. Safer programming: use warnings
Weʼve been telling you to always include a use warnings; line in your Perl scripts, but
we havenʼt really explained why. Letʼs see what can happen when we donʼt include it.

Task P8.1: In the last lesson, we discussed assignments in lists. What if the lists are not
the same length? Let's find out. Try this program, but this time make sure that you donʼt
include the use warnings; statement.

1. #!/usr/bin/perl
2. # undefined.pl
3. use strict;
4.
5. my ($x, $y, $z) = (1, 2, 3, 4, 5);
6. print "x=$x y=$y z=$z\n";
7.
8. my ($a, $b, $c) = (1, 2);
9. print "c=$c\n";
10. print length($c), "\n";
11. print $a + $c, "\n";

Line 5 assigns 3 variables with 5 values. The two extra values on the right are simply
thrown away.

Line 8 assigns 3 variables from only 2 values. What is $c? The output from line 9
suggests that $c is some kind of a blank, and the output from line 10 suggests it has no
length. But the output from line 11 suggests that $c has a value of zero. $c has an
undefined value. It is simultaneously zero and an empty string. Do you find this
confusing? It is.

Undefined values are bad. You should never assume the contents of a variable.
Variables should always be assigned before they are used. Similarly, lists should be the
same length on each side of an assignment, but Perl has no way of checking this. To
find undefined values, always include use warnings in your program. This will alert you
when undefined variables are being used. If you have undefined values, stop
immediately and debug. A program that runs with undefined values can be very
dangerous.

Task P8.2: Modify the original program by adding a use warnings; line. Run the
program and observe what happens. The errors that you should see are a good thing!

Unix and Perl Primer for Biologists

74

P9. Arrays
Lists are useful for declaring and assigning multiple variables at once, but they are
transient and if we want to store the details of a list then we have to capture all the
values into separate variables. Ideally, there should be a way of referring to all of a list in
one go, and there should be a way to access individual items in a list. In Perl (and in
most other programming languages) we do this using arrays.

An array is a named list. Each array element can be any scalar variable that we have
seen so far, e.g. a number, letter, word, sentence etc. In Perl, as in most programming
languages, an array is indexed by integers beginning with zero. The first element of an
array is therefore the zero-th element. This might confuse you but that's just the way it
is. Arrays in Perl are named using the '@' character. Let's imagine that we have an array
called @cards that contains five playing cards (we can imagine that each card in the
array would be stored as a text string such as '7D' for 'seven of diamonds').

If we wanted to see what the individual elements of the @cards array were, we could
access them at array positions 0 through to 4. It's important to note that arrays always
have a start (the zero-th position), an end (in this case, position 4), and a length (in this
case 5). Arrays can contain just one element in which case the start and the end would
be the same. Arrays can also contain no elements whatsoever (more of that later).

Unix and Perl Primer for Biologists

75

In biology you might frequently see arrays used to store DNA or protein sequence
information. This could either be where each element is a separate DNA/protein
sequence, or where each element is one nucleotide/amino acid and the whole array is
the sequence.

Task P9.1: Create and run the following program.

1. #!/usr/bin/perl
2. # array.pl
3. use strict; use warnings;
4.
5. my @animals = ('cat', 'dog', 'pig');
6. print "1st animal in array is: $animals[0]\n";
7. print "2nd animal in array is: $animals[1]\n";
8. print "Entire animals array contains: @animals\n";

Line 5 assigns the @animals array a list of 3 values. Note how we also have to declare
arrays with 'my' if we are including the use strict; statement.

Lines 6 and 7 show how to access individual elements of an array. You specify a
position in the array by putting an integer value between square brackets. The integer
value is known as the 'array index'.

Lines 6 and 7 also shows that you can interpolate individual scalars inside double
quotes, i.e. Perl prints out the value stored at the specified array position rather than just
printing the text $animals[0].

Line 8 shows that if you include an array name between double quotes, then the entire
array interpolates and Perl will add spaces between each element in the printed output.

Note that each element of the list is a scalar variable. We write $animals[0] never
@animals[0]. There is no such thing as @animals[0] in Perl. The membership of
$animals[0] in @animals is shown by the square brackets. Writing @animals[0] is one of
the most common errors of new programmers (it's so common that it will actually be
legal in the next version of Perl...). Try modifying the code to include this erroneous
syntax and observe the warning message.

6. print "@animals[0]\n"; # bad

Unix and Perl Primer for Biologists

76

Making arrays bigger and smaller

Perl arrays are dynamic. That is, they grow and shrink automatically as you add/remove
data from them. It is very common to modify the contents of arrays, and it is also very
common to start off with an array full of things, and then remove one thing at a time.
Most of the time we add or remove things to either end of an array and Perl has four
dedicated functions to do this:

Task P9.2: To examine this dynamic behavior, we will first learn to use the push()
function to add some new data onto the array. The push function is used to add one
thing to the end of an array. The end of an array is the element with the highest array
index position. Add the following lines to your program.

9. push @animals, "fox"; # the array is now longer
10. my $length = @animals;
11. print "The array now contains $length elements\n";

Line 10 introduces a very useful concept in Perl. If you assign a list to a scalar variable,
then the scalar variable becomes the length of the list. This is so useful that you will use
it a lot in your Perl code. You can think of this in another way. Anywhere in a Perl script
where it is possible to specify a numerical value, you can instead specify the name of an
array. If that array contains any elements then Perl will calculate the length of the array
and use the number of elements.

Unix and Perl Primer for Biologists

77

http://perldoc.perl.org/functions/push.html
http://perldoc.perl.org/functions/push.html

It is a common mistake to confuse the following two lines of code, can you work out
what the difference is?

$length = @animals;
($length) = @animals;

The first line of code takes the length of the animals array and assigns that to the
$length variable. But when we add parentheses around $length we are now making a
list, and the second line of code is therefore a list assignment. It doesn't look much like
a list because there is only one thing in it, but it is still a list. So the second line of code
could be read as 'take the @animals array and assign all of the elements to a new list
called $length'. Of course in this case the new list is shorter than the array so it can only
receive one item. Have a look again at section P8.1 to see if that helps you understand
things.

Task P9.3: Just to make sure you fully understand arrays, let's add a few more lines.

12. my ($first, $second) = @animals;
13. print "First two animals: $first $second\n";
14. my @animals2 = @animals; # make a copy of @animals
15. @animals = (); # assign @animals an empty list -> destroys contents
16. print "Animals array now contains: @animals\n";
17. print "Animals2 array still contains @animals2\n";

Common Array Functions

We already saw push() as a way of adding an element to the end (tail) of a list.
Naturally, you can add an element to the front (head) of a list, or remove elements
instead of adding them. Try modifying your program to use the following set of functions:
pop(), shift(), unshift(), and if you're really brave splice(). The last function is the hardest
one to understand but also the most powerful because it allows you add, remove, or
substitute array elements at any position in the array, not just at the ends.

Function Meaning
push(@array, "some value") add a value to the end of the list
$popped_value = pop(@array) remove a value from the end of the list

$shifted_value = shift (@array) remove a value from the front of the list
unshift(@array, "some value") add a value to the front of the list

splice(...) everything above and more!

Unix and Perl Primer for Biologists

78

http://perldoc.perl.org/functions/pop.html
http://perldoc.perl.org/functions/pop.html
http://perldoc.perl.org/functions/shift.html
http://perldoc.perl.org/functions/shift.html
http://perldoc.perl.org/functions/unshift.html
http://perldoc.perl.org/functions/unshift.html
http://perldoc.perl.org/functions/splice.html
http://perldoc.perl.org/functions/splice.html

Task P9.4: Experiment with the array functions by adding some new lines to array.pl.
Rather than just adding a text string to an array, try to see if you can use the push() or
shift() functions to add variables or even other arrays to existing arrays. For the shift()
and pop() functions, try to see what happens if you don't assign the popped or shifted
value to a variable. E.g. try to determine the difference between the following two lines
of code:

my $value = pop(@array);
pop(@array);

More About Array Indexes

Let's consider a couple more indexing issues. Add the following lines but before running
it, try to guess what will happen.

18. @animals = ('cat', 'dog', 'pig'); # needed because @animals was emptied
19. print "Animal at array position 1.2 is $animals[1.2]\n";
20. print "Animal at array position 1.7 is $animals[1.7]\n";
21. print "Animal at array position -1 is $animals[-1]\n";
22. print "array length = ", scalar(@animals), "\n";

Floating point value such as 1.2 or 1.7 are rounded down. Using negative numbers for
the array index positions have the effect of counting from the tail of the array. The
scalar() function forces scalar context on its argument. As we know, an array gives its
length in scalar context. Recall $length = @animals. The scalar() function does the
same thing without the need to create an extra variable. Something else you can try is
to look up an array element using a text string rather than a number. E.g. what happens
if you try the following?

23. print "Animal at array position 'foobar' is ", $animals["foobar"], "\n";

You could substitute "foobar" for any text at all. The first thing that you should notice is
that the Perl program should give you a useful warning message:

Argument "foobar" isn't numeric in array element at...

Strings such as "foobar" have a numeric value of zero and so if you use any text instead
of a number when trying to lookup a specific position in an array, you will always get the
first (zero-th) element. Hopefully you will never try doing this.

Unix and Perl Primer for Biologists

79

P10. From strings to arrays and back
We saw that if we try printing an array between double quotes, then Perl interpolates
the array and prints each element separated by a space. What if we want something
other than spaces? In Perl, there's always more than one way to do things, but the best
way is with the join() function, which allows you to create a string from an array and put
whatever you want between the elements of the array.

Task P10.1: Let's say we want to create a CSV (comma separated values) format from
an array of gene names from the nematode Caenorhabditis elegans. Here's how we do
that.

1. #!/usr/bin/perl
2. # stringarray.pl
3. use strict; use warnings;
4.
5. my @gene_names = qw(unc-10 cyc-1 act-1 let-7 dyf-2);
6. my $joined_string = join(", ", @gene_names);
7. print "$joined_string\n";

Line 5 uses qw() to make an array. qw() is short for quote words. It's a little shorthand
so that we don't have to keep typing quotation marks.

Line 6 creates a string from an array with join(), and specifies that each element of the
array should be joined with a comma followed by a space.

The opposite function of join() is the split() function. This divides a string into an array.
But we have to tell it where to split. This works sort of like a restriction digest but the
restriction site is consumed in the process.

Task P10.2: Add the following lines to your program and run it.

8. my $dna = "aaaaGAATTCttttttGAATTCggggggg";
9. my $EcoRI = "GAATTC";
10. my @digest = split($EcoRI, $dna);
11. print "@digest\n";

If we want to convert a string into an array and split the string at every possible position,
we need to use an empty string ("") in the split() function. This is often used to convert
DNA/protein sequences stored in variables into arrays:

12. my @dna = split("", $dna);
13. print "@dna\n";

Unix and Perl Primer for Biologists

80

http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/qw.html
http://perldoc.perl.org/functions/qw.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/split.html

P11. Sorting
As in real life, lists are great, but sorted lists are even better. Imagine looking through a
telephone book if it wasn't sorted... tedious. Perl has an incredibly flexible sorting
function. But it's a little complicated, so you may want to come back and read this part
again later.

Task P11.1: Create the following program and run it. How does Perl sort items in a list?

1. #!/usr/bin/perl
2. # sorting.pl
3. use strict; use warnings;
4.
5. my @list = qw(c b a C B A a b c 3 2 1); # an unsorted list
6. my @sorted_list = sort @list;
7. print "default: @sorted_list\n";

Line 5 calls the sort() function. This could have been written with parentheses around
the @list part, but this is one of those cases where parentheses are usually left off.
We assign the result of the sort to a new array, but we could have also overwritten the
original array, e.g.

my @list = sort @list;

Looking at the output, it should be clear that Perl sorts by ASCII value by default. It is
using the cmp operator we saw earlier. What if you want to sort numerically? Then you
would have to use the numeric comparison operator <=>. To specify this, you use an
unfamiliar syntax.

8. @sorted_list = sort {$a <=> $b} @list;
9. print "numeric: @sorted_list\n";

In general, sorting routines compare pairs of values. In Perl, these values are held by
the magic variables $a and $b. For this reason, you should not use these variable
names in your own programs. Line 7 shows that $a and $b are compared numerically.
The default sort is simply {$a cmp $b}.

This code should produce a few warning messages (because we have the use
warnings; statement), and this is because we are asking to sort values numerically but
'A', 'B', 'C' etc are not numbers. As we saw previously, text has a numeric value of zero.
So if you compare text as numbers, it does not sort alphabetically (and Perl warns us of
this fact).

Unix and Perl Primer for Biologists

81

http://en.wikipedia.org/wiki/Ascii
http://en.wikipedia.org/wiki/Ascii

If you want to sort in reverse direction, you simply exchange the variables $a and $b.

10. @list = qw (2 34 -1000 1.6 8 121 73.2 0);
11. @sorted_list = sort {$b <=> $a} @list;
12. print "reversed numeric: @sorted_list\n";

What if you want to sort both numerically and alphabetically and you want no
differentiation between capitals and lowercase? Perl can do this, of course, but the
explanation will be left for later.

13. @sorted_list = sort {$a <=> $b or uc($a) cmp uc($b)} @list;
14. print "combined: @sorted_list\n";

Unix and Perl Primer for Biologists

82

P12. Loops
Loops are one of the most important constructs in programming. Once you have
mastered loops, you can do some really useful programming. Loops allow us to do
things like count from 1 to 100, or cycle through each element in an array, or even,
process every line in an input file. There are three main loops that you will use in
programming, the for loop, the foreach loop, and the while loop.

The for Loop

The for loop generally iterates over integers, usually from zero to some other number.
You can think of the integer as a 'loop counter' which keeps track of how many times
you have been through the loop (just like a lap counter during a car race). The for loop
has 3 components:

1. initialization - provide some starting value for the loop counter
2. validation - provide a condition for when the loop should end
3. update - how should the loop counter be changed in each loop cycle

If we return to the car race analogy, we can imagine a car having to drive 10 laps
around a circular track. At the start of the race the car has not completed any laps so
the loop counter would be initialized to zero. The race is clearly over when the counter
reaches 10 and each lap of the track updates the counter by 1 lap.

Task P12.1: Create and run the following program.

1. #!/usr/bin/perl
2. # loop.pl
3. use strict; use warnings;
4.
5. for (my $i = 0; $i < 10; $i = $i + 1) {
6. print "$i\n";
7. }

The syntax for a for loop requires the three loop components to be placed in
parentheses and separated with semi-colons. Curly braces are then used to write the
code that will be executed during each iteration of the loop. This code is usually
indented in the same way that we indent blocks of code following if statements. In this
loop we first declare a new variable (my $i) to act as our loop counter. It is a convention
in programming to use $i as a loop variable name because of the use of i as a counter
in mathematical notation, e.g.

Unix and Perl Primer for Biologists

83

You could name your loop counter anything that you wanted to, but we suggest that for
now you just use $i. Let's see what the three components of our loop are doing:

$i = 0 performs initialization, i.e. start our loop with $i equal to zero
$i < 10 performs validation, i.e. keep the loop going as long as $i is less than 10
$i = $i + 1 performs the update, $i is incremented by one during each loop iteration

It is very common in Perl that you want to take a number and just add 1 to it. In fact, it is
so common that Perl has its own operator to do it, the increment operator:

$i++

This is more succinct and is the common way to increment a variable by one. Not
surprisingly, you can also decrement a variable by one with --. Note that the 'update'
component of the loop should describe a way of increasing (or decreasing) the value of
$i otherwise the loop would never end.

Task P12.2: Try looping backwards and skipping.

8. for (my $i = 50; $i >= 45; $i--) {print "$i\n"}
9. for (my $i = 0; $i < 100; $i += 10) {print "$i\n"}

Since the blocks of code following these for loops are only one line long, they do not
need a semi-colon at the end. We saw this earlier when making conditional statements
tidy.

Line 9 uses the += operator. This is a useful shortcut and in this case the result is
exactly the same as if we had typed $i = $i + 10. Similar operators exist for
subtraction (-=), multiplication (*=) etc. Note how the loop in line 9 is counting in tens
and not incrementing by one at a time.

Unix and Perl Primer for Biologists

84

Task P12.3: Let's do something a little bit useful with a loop. This program computes the
sum of integers from 1 to n, where n is some number on the command line. Of course
you could compute this as (n+1) * n / 2, but what is the point of having a computer if not
to do brute force computations?

1. #!/usr/bin/perl
2. # sumint.pl
3. use strict; use warnings;
4.
5. die "usage: sumint.pl <limit>\n" unless @ARGV == 1;
6. my ($limit) = @ARGV;
7. my $sum = 0;
8. for (my $i = 1; $i <= $limit; $i++) {$sum += $i}
9. print "$sum\n";

Line 5 is a usage statement. We saw this earlier in Project 1 and in this script it is just
adding a check to ensure that we specify one (and only one) command-line argument
when we run the script.. Line 6 assigns the command-line argument to $limit. Line 7
creates a variable to hold the sum. Line 8 uses a loop to add the latest value of $i to the
$sum variable.

Task P12.4: Write a program, factorial.pl, that computes the factorial of a number.
Structurally, it will be very similar to sumint.pl, but of course you will be multiplying
values instead of adding.

Task P12.5: One of the most common operations you will do as a programmer is to loop
over arrays. Let's do that now. To make it interesting, we will loop over two arrays
simultaneously.

1. #!/usr/bin/perl
2. # loops.pl
3. use strict; use warnings;
4.
5. my @animals = qw(cat dog cow);
6. my @sounds = qw(Meow Woof Moo);
7. for (my $i = 0; $i < @animals; $i++) {
8. print "$i) $animals[$i] $sounds[$i]\n";
9. }

The for loop starts at 0, which is where all arrays start, and continues as long as the
loop variable $i is less than the length of the array (which is found from the scalar
context of an array).

Unix and Perl Primer for Biologists

85

The foreach Loop

The foreach loop allows you to iterate through the contents of an array without a
numeric index. Instead, a temporary variable is set to the contents of each element. Add
the following code to your program.

10. foreach my $animal (@animals) {
11. print "$animal\n";
12. }

Here, $animal is the temporary variable. It changes from cat to dog to cow with each
iteration of the loop. It is very common to name the temporary variable as a singular
form of the array name. E.g. foreach my $protein (@proteins){

You can also use the foreach loop in a numeric manner. If you are a lazy typist
(potentially an admirable quality if you are concerned about RSI), you can even use for
rather than foreach. Line 13 shows how to create to create a numeric list with the ..
operator.

13. for my $i (0..5) {print "$i\n"}

The while Loop

The while loop continues to iterate as long as some condition is met, where the
condition is some notion of True or False. The 'condition' part of a while loop can be as
simple or as complex as you want it to be. Here is an example of a very simple while
loop which keeps doubling a number until some limit is reached:

14. my $x = 1;
15. while($x < 1000){
16. print "$x\n";
17. $x += $x;
18. }

In this example the code will continue to loop while the value of $x is less than 1000,
and $x is doubled for each iteration of the loop. It is important that the test condition will
be testing something that is going to change. But Perl will allow you to write code which
contains a pointless test condition.

Unix and Perl Primer for Biologists

86

Task P12.6: Add these lines to your program and run it.

19. while (0) {
20. print "this statement is never executed because 0 is false\n";
21. }
22. while (1) {
23. print "this statement loops forever\n";
24. }

The first while loop will never print anything at all because a zero value is always treated
as false by Perl. So the loop will run only while the value of zero evaluates to true which
is never going to happen.

The second loop will start but never end because the test condition ('while 1 is true') is
always true. In fact, anything which isn't a zero or the null string ("") will always evaluate
as true. To stop this program, press Control+c in your terminal. This sends the Unix
'interrupt' signal to the program (you might want to commit that trick to memory).

Let's try looping through an array with a while loop. Replace lines 10-12 with these.

13.	 while (@animals) {
14. my $animal = shift @animals;
15. print "$animal\n";
16. }

In each iteration through the loop, the array @animals is shortened by removing one item
from the front of the list (using the shift function). The loop ends when the length of the
array is 0 (empty). There are times when this kind of array-deletion construct is useful,
but most of the time you will be looping through arrays with for or foreach.

The do Loop

The do loop is a variation of the while loop. Unlike the while loop, it always executes at
least once. Do loops are not so common.

17. do {
18. print "hello\n";
19. } while (0);

Congratulations! You have now learned about variables, numbers, math, strings,
conditionals, arrays, and loops. Even though there is still a lot to learn, you have come a
long way. You can now write some very useful programs.

Unix and Perl Primer for Biologists

87

Loop Control

There are times when you will want a little more control in your loops. The next keyword
immediately restarts the loop at the top and advances the loop variable. The redo
keyword restarts the loop also, but does not advance the loop variable. The last
keyword terminates the entire loop.

P12.7: Here is a program that illustrates redo and last. It computes the prime numbers
between 100 and 200.

1. #!/usr/bin/perl
2. # primes.pl
3. use strict; use warnings;
4.
5. my $n = 0;
6. while (1) {
7. $n++;
8. redo if $n < 100;
9. last if $n > 200; # breaks out of while loop
10.
11. my $prime = 1; # assumed true
12. for (my $i = 2; $i < $n; $i++) {
13. if ($n % $i == 0) {
14. $prime = 0; # now known to be false
15. last; # breaks out of for loop
16. }
17. }
18.
19. print "$n\n" if $prime;
20. }

Line 8 contains a redo. This short-circuits the while loop as long as $n is less than 100.
You could have used next here also because there is no loop variable.

Line 9 uses the last function to terminate the while loop, effectively ending the
program, if $n is greater than 200.

Lines 11–17 determine if a number is prime. This method starts off assuming $n is
prime. It then checks all the numbers from 2 and $n -1 to determine if $i is a factor of
$n. If $i is a factor of $n (line 11) then there is no point in calculating any further
because $n is not prime. So $prime is set to false (line 14) and the for loop is
terminated (line 15).

Unix and Perl Primer for Biologists

88

When to use each type of loop?

There will be situations where you can use different types of loop structure to achieve
exactly the same goal for a program. Conversely there are times when only one type of
loop will do. It might not always be clear to you how to make the correct choice, but with
practice it becomes more obvious. Feel free to experiment with different loop structures
to see what works and what doesn't.

Unix and Perl Primer for Biologists

89

Project 2: Descriptive statistics
In this project, you will write a program that computes typical descriptive statistics for a
set of numbers. Here are the first few lines. Your program should compute the count,
sum, minimum, maximum, median, mean, variance, and standard deviation. It should
report these in some pleasing format. Of course, it should have a usage statement like
all good programs. Here are the first few lines.

1. #!/usr/bin/perl
2. # stats.pl by ___
3. use strict; use warnings;
4.
5. die "usage: stats.pl <number1> <number2> <etc>\n" unless @ARGV > 1;

Count, Sum, and Mean

We already know how to do these.

Min, Max, and Median

The median value is at the middle of the sorted list of values. If the list has an even
number of elements, then the median is the average of the two at the middle. The
minimum and maximum are easily found from the sorted array.

Variance

Variance is the average squared difference from the mean. So compute the mean first
and then go back through the values, find the difference from the mean, square it, and
add it all up. In the end, you divide by the n or n -1 depending on if you are computing
the population or sample variance.

Standard Deviation

Simply the sqrt() of the variance.

Unix and Perl Primer for Biologists

90

Project 3: Sequence shuffler
In this project, you will create a program that randomly shuffles a DNA sequence (or any
text really). Shuffling is a really useful way to provide a null model. For example,
suppose you do a sequence alignment and get a score of 30. Is this a good score? How
often does a score of 30 happen by chance? To determine this, you could randomly
shuffle your sequence and perform the search again (and again, and again...).

There are a variety of ways to shuffle a sequence. One way is to repeatedly exchange
randomly selected pairs of letters. Another way is to remove a random letter from one
sequence to build up another sequence. Random numbers are generated with the rand
() function as we saw back in lesson P3.

As usual, your program should have a usage statement.

Strategy 1

1. Turn the DNA string into an array with split()
2. Use a for loop to perform the following procedure many times

2.1. Select a random position A with rand()
2.2. Select a random position B with rand()
2.3. Exchange the letters at indices A and B

3. Print the now shuffled array

Strategy 2

1. Create a new, empty array to hold the shuffled sequence
2. Turn the DNA string into an array with split()
3. Use a while loop for as long as the original array exists

3.1. Select a random position A in the original array with rand()
3.2. Remove the letter at index A from the original array with splice()
3.3. Add the letter to the shuffled array with push()

4. Print the new shuffled array

Unix and Perl Primer for Biologists

91

P13. File I/O
Our programs so far have taken arguments on the command line. But that is not a very
common way to receive data. People generally hand you a file. Fortunately, reading files
in Perl is incredibly simple.

Task P13.1: Create the program below and when you run it, specify the name of a text
file on the command line after the program name. E.g.

linecount.pl Unix_and_Perl_course/Data/Misc/oligos.txt

Then try running it against several files at once (by putting multiple file names on the
command line).

1. #!/usr/bin/perl
2. # linecount.pl
3. use strict; use warnings;
4.
5. my $lines = 0;
6. my $letters = 0;
7. while (<>) {
8. $lines++;
9. $letters += length($_);
10. }
11. print "$lines\t$letters\n"; # \t is a tab character

Line 7 contains something you haven't seen before. This is the <> file operator. By
default, this reads one line at a time from the file specified on the command line. If there
are multiple files on the command line, it will read them all in succession. It even reads
from stdin (standard input) if you include it in a pipe. True Perl magic!

The default variable $_

Line 9 is our first introduction to the default variable $_. Perl automatically assigns this
variable in some settings. Here, $_ contains each line of the file. Although you don't see
it, Perl is actually performing the following operation.

5. while ($_ = <>) {

If you find this confusing, you can specifically name a variable.

5. while (my $line = <>) {

But you should get used to using $_ because it is so common among Perl programs.
Perl can also retrieve $_ by default in some functions. For example, without any

Unix and Perl Primer for Biologists

92

arguments, print() will report $_. The following one-line program simply echos the
contents of a file.

while (<>) {print}

You can use $_ in loops too, but I prefer not to. Here is another one-liner in which $_ is
used in place of a named loop variable.

for (0..5) {print}

Confusing? Yes, a little. But you do get used to it. For now, feel free to name all your
variables. By the way, in addition to $_, there are a large number of other special
variables with equally strange symbols.

The open() Function

There are times when you have several files and you don't want to read them all one
after the other. For example, one might be a FASTA file and the other GFF. You wouldn't
want to process both files with the same code. To open and read a single file, you use
the open() function. This will open a file for reading or writing, but not both. Let's see
how we use that.

Task P13.2: Create the following program. This will read the contents of a file that you
specify on the command line and then create a second file with slightly altered contents.

1. #!/usr/bin/perl
2. # filemunge.pl
3. use strict; use warnings;
4.
5. open(IN, "<$ARGV[0]") or die "error reading $ARGV[0] for reading";
6. open(OUT, ">$ARGV[0].munge") or die "error creating $ARGV[0].munge";
7. while (<IN>) {
8. chomp;
9. my $rev = reverse $_;
10. print OUT "$rev\n";
11. }
12. close IN;
13. close OUT;

Lines 5 and 6 contain open() statements for reading and writing. IN and OUT are called
file handles. These are special variables used only for file operations. The second
argument determines if the open() statement is for reading or writing. "<" is for reading
and ">" is for writing. This should look familiar from your Unix lessons. If you do not
include "<" or ">", then the file is opened for reading. Both of the open() statements
include an additional "or" clause in case of failure. We will talk more about this later.

Unix and Perl Primer for Biologists

93

Line 7 should look a little familiar. Instead of using <> by itself, there is a named file
handle inside the brackets. Only the file associated with IN will be read.

Line 8 introduces the chomp() function. This removes a \n character from the end of a
line if present. It is quite common to chomp your $_.

Line 9 reverses $_. We haven't seen the reverse() function before. It reverses both
strings and arrays.

Lines 12 and 13 close the two file handles. You should always get into the habit of
making sure that every open function has a matching close function. It is possible that
bad things will happen if you donʼt close a file handle. You should also try to close a file
handle at the first opportunity when it is safe to do so, i.e. as soon as you are finished
with reading from, or writing to, a file.

Naming file handles

File handles are typically given upper case names. You can use lower-case names and
your script will probably still work but Perl will also print out a warning. If you only ever
read from one input file and write to one output file then IN and OUT are typical file
handle names, though feel free to name them whatever you feel is most suitable (INPUT,
DATA etc.). If you need to read from multiple files then it might be a good idea to use file
handle names that describe the type of data, e.g. GFF or FASTA.

Unix and Perl Primer for Biologists

94

http://perldoc.perl.org/functions/reverse.html
http://perldoc.perl.org/functions/reverse.html

P14. Hashes
A hash is also called a dictionary or associative array. It is very similar to the kind of
array we saw earlier except that instead of indexing the array with integers, the array is
indexed with text. The dictionary analogy is fitting. A word is an index to its definition. A
hash can be created in list context, just like an array. But since we need to provide the
text index, it is necessary to provide key, value pairs.

Task P14.1: Create the following program. We have not seen the % sign in front of a
variable before. This is symbol for a hash variable. If we are including the use strict;
statement then we will also need to declare any hashes with 'my'.

1. #!/usr/bin/perl
2. # hash.pl
3. use strict; use warnings;
4.
5. my %genetic_code = ('ATG', 'Met', 'AAA', 'Lys', 'CCA', 'Pro');
6. print "$genetic_code{'ATG'}\n";

Notice that when you want to access a value from a hash, you use curly brackets '{'
rather than square brackets '['. Curly brackets lets Perl know you are accessing a hash
rather than an array. You could have variables named $A, @A, and %A, and they would all
be different variables. Note that using the same name for different things in this way,
would be considered bad programming style. $A is scalar. $A[0] is the first element of
the @A array. $A{'cat'} is the value for the 'cat' key of the %A hash.

When declaring hashes, there is an alternative syntax that is makes the assignments
more obvious. Here, we replace the comma between the key and the value with a kind
of arrow =>. This reads as 'gets'. Or alternatively 'says'. So 'cat' => 'meow' reads as
"cat says meow".

5.	 %genetic_code = ('ATG' => 'Met', 'AAA' => 'Lys', 'CCA' => 'Pro');

This looks even more logical when split onto multiple lines.

5. %genetic_code = (
6. 'ATG' => 'Met',
7. 'AAA' => 'Lys',
8. 'CCA' => 'Pro',
9.);
10. print "$genetic_code{'ATG'}\n";

The last comma in line 8 is unnecessary, but it does no harm, and we like tidy,
consistent code. It turns out that when using the => syntax, Perl knows that the you are
assigning a hash, so the quotes around the keys are actually unnecessary.

Unix and Perl Primer for Biologists

95

5. %genetic_code = (
6. ATG => 'Met', # single quotes now removed from keys
7. AAA => 'Lys',
8. CCA => 'Pro',
9.);
10. print "$genetic_code{ATG}\n";

The quotes on the values are absolutely required in this example because the values
are strings. You would not need them if the values were numbers.

Keys and Values

It's a simple matter to iterate through arrays because they have numeric indices from 0
to one less than the array size. For hashes, we must iterate over the keys, and for that,
we need the various strings. Not surprisingly, this is performed with the keys() function.

Task P14.2: Add the following code to your program to report the keys and
corresponding values from your hash. It is very common to use the variable name $key
in a foreach loop, although in this example $codon may also be a suitable choice.

11. foreach my $key (keys %genetic_code) {
12. print "$key $genetic_code{$key}\n";
13. }

They keys() function returns an array of keys. Similarly, the values() function returns an
array of values. Add the following lines to your program to observe this more explicitly.

14. my @keys = keys(%genetic_code);
15. my @vals = values(%genetic_code);
16. print "keys: @keys\n";
17. print "values: @vals\n";

Hashes store key-value pairs in a semi-random order (it's not random, but you have no
control over it). So you will often want to sort the keys. Replace line 11 with the
following.

11.	 foreach my $key (sort keys %genetic_code) {

Adding, Removing, and Testing

Recall that for arrays, you generally either push() or unshift() to add new values to an
array. You can also assign a value at an arbitrary index such as $array[999] = 5.
Adding pairs to a hash is similar to assigning an arbitrary index. If you assume the key
exists, Perl will create it for you. But watch out, if you use a key that previously existed,
the value will be overwritten.

Unix and Perl Primer for Biologists

96

http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/keys.html

Task P14.3: Modify your program to include the following statements.

18. $genetic_code{CCG} = 'Pro';
19. $genetic_code{AAA} = 'Lysine';

Line 18 adds a new key ('CCG') to the hash. Note that the value of this key also exists
as the value to another key in the hash. Line 19 reassigns the value that the 'AAA' key
points to. Sometimes you may want to ask if a particular key exists in a hash, for
example, before overwriting something. To do this, you use the exists() function.

20. if (exists $genetic_code{AAA}) {print "AAA codon has a value\n"}
21. else {print "No value set for AAA codon\n"}

To remove a key and its value from a hash, you use the delete() function.

22. delete $genetic_code{AAA};

Function Meaning
keys %hash returns an array of keys

values %hash returns an array of values
exists $hash{key} returns true if the key exists
delete $hash{key} removes the key and value from the hash

Hash names

If you work with a lot of hashes, it can sometimes help to make the hash name explain
something about the data it contains. Hashes typically link pairs of connected data, e.g.
name of sequence, and GC% content of that sequence; name of a politician, and the
number of votes that they received. Based on these examples, which of the following
hash names do you find easier to understand:

%seq
%sequences;
%sequence_details;
%sequence2gc;
%sequence_to_gc;

%vote;
%names;
%name2votes;
%name_to_votes;

Unix and Perl Primer for Biologists

97

http://perldoc.perl.org/functions/exists.html
http://perldoc.perl.org/functions/exists.html
http://perldoc.perl.org/functions/delete.html
http://perldoc.perl.org/functions/delete.html

P15. Organizing with hashes
Task P15.1: Examine the Data/Misc/oligos.txt file. This is a file containing the names
and sequences of some oligos separated by tabs. Suppose you want to calculate the
melting temperature (Tm) of each oligo and then print out the oligos ordered by their
Tm. We can do this by using two hashes, one will store the sequences and the other will
store the Tms. Both hashes will be indexed by the oligo name.

Note the use of comments and whitespace in this script. As we discussed previously,
these help the readability of the program. The "header" is lines 1–3. Line 5 is by itself
because it is functionally distinct. Line 7 declares the two hashes that we will use. Lines
9–24 are the main body of the program. Whitespace and comments further refine these
sections to their purpose. Lines 26–29 are for output. Try to follow a similar logical
structure in your own programs. Line 27 may be incomprehensible at first. If you don't
get it, don't sweat it.

1. #!/usr/bin/perl
2. # oligo.pl by ___
3. use strict; use warnings;
4.
5. die "usage: oligo.pl <file of oligos>\n" unless @ARGV == 1;
6.
7. my (%sequences, %tm); # declare hashes
8.
9. # process file line-by-line
10. while (<>) {
11. chomp;
12.
13. # store sequence
14. my ($name, $seq) = split("\t", $_);
15. $sequences{$name} = $seq;
16.
17. # calculate and store Tm
18. my $A = $seq =~ tr/A/A/;
19. my $C = $seq =~ tr/C/C/;
20. my $G = $seq =~ tr/G/G/;
21. my $T = $seq =~ tr/T/T/;
22. my $tm = 2 * ($A + $T) + 4 * ($C + $G); # simple Tm formula
23. $tm{$name} = $tm;
24. }
25.
26. # report oligos sorted by Tm
27. foreach my $name (sort {$tm{$a} <=> $tm{$b}} keys %tm) {
28. 	 print "$name\t$tm{$name}\t$sequences{$name}\n";
29. }

Unix and Perl Primer for Biologists

98

P16. Counting codons with substr()
Task P16.1: The substr() function is useful for extracting a sub-string from a string. In
bioinformatics we often want to extract a part of an amino acid or nucleotide sequence.
Here is a little program that shows how substr() works. Note the 3 arguments that the
substr() function requires: the string to extract from, an offset (starting from zero), and
a length for how many characters to extract. This program prints "MRVLK ...
TVLSAPAKIT".

1. #!/usr/bin/perl
2. # substr.pl
3. use strict; use warnings;
4.
5. my $seq = "MRVLKFGGTSVANAERFLRVADILESNARQGQVATVLSAPAKIT";
6. my $first5 = substr($seq, 0, 5);
7. my $last10 = substr($seq, length($seq) - 10, 10);
8. print "$first5 ... $last10\n";

Task P16.2: Now let's do something useful and determine the codon usage for a
sequence given on the command line.

1. #!/usr/bin/perl
2. # codon_usage.pl by ___
3. use strict; use warnings;
4.
5. die "usage: codon_usage.pl <sequence>\n" unless @ARGV == 1;
6. my ($seq) = @ARGV;
7.
8. my %count = (); # individual codons
9. my $total = 0; # total codons
10.
11. # extract each codon from the sequence and count it
12. for (my $i = 0; $i < length($seq); $i += 3) {
13. my $codon = substr($seq, $i, 3);
14. if (exists $count{$codon}) {$count{$codon}++}
15. else {$count{$codon} = 1}
16. $total++;
17. }
18.
19. # report codon usage of this sequence
20. foreach my $codon (sort keys %count) {
21. my $frequency = $count{$codon}/$total;
22. printf "%s\t%d\t%.4f\n", $codon, $count{$codon}, $frequency;
23. }

Unix and Perl Primer for Biologists

99

http://perldoc.perl.org/functions/substr.html
http://perldoc.perl.org/functions/substr.html

Note that on line 8 we use a slightly different way of introducing a hash. The following
lines of code are similar:

my %count;
my %count = ();

The first example declares a new hash, and the second example additionally initializes
the hash which means it will empty the hash of any data (if any existed).

You may have noticed that line 20 adds a second 'my $codon = ' statement to the script.
It is important to realize that the $codon within this second foreach loop is completely
different to the $codon that exists in the previous for loop. If this seems confusing, then
you will have to wait a little longer before we give the full explanation for this. If it
bothers you, then feel free to rename the second $codon variable to something else.

Line 22 introduces the printf() function to format the output. printf() has a somewhat
arcane syntax handed down from the C programming language. %s means string, %d
means digit (integer), and %f means floating point. %.4f means 4 decimal places.

Unix and Perl Primer for Biologists

100

http://perldoc.perl.org/functions/printf.html
http://perldoc.perl.org/functions/printf.html

P17. Regular expressions 101
Previously we learned about the matching and substitution operators: the former lets
you see whether a variable contains some text, the latter lets you substitute one string
for another. These operators are much more powerful than they first appear. This is
because you can use them to search for patterns rather than strings.

Task P17.1: Create the simple program below. We will be modifying it quite a bit in this
section. Let's say we want to see whether a particular DNA sequence contains a codon
for proline. There are four options (CCA, CCC, CCG, or CCT). If we have a coding
sequence which is already separated into codons, then one (tedious) way to do this
would be with multiple conditional statements.

1. #!/usr/bin/perl
2. # codonsearch.pl
3. use strict; use warnings;
4.
5. my $seq = "ACG TAC GAA GAC CCA ACA GAT AGC GCG TGC CAG AAA TAG ATT";
6. if ($seq =~ m/CCA/) {print "Contains proline (CCA)\n"}
7. elsif ($seq =~ m/CCC/) {print "Contains proline (CCC)\n"}
8. elsif ($seq =~ m/CCG/) {print "Contains proline (CCG)\n"}
9. elsif ($seq =~ m/CCT/) {print "Contains proline (CCT)\n"}
10. else {print "No proline today. Boo hoo\n"}

Imagine doing this for all possible codons... tiresome. Ideally, we want a solution which
would search for 'CCN' where N is A, C, G, or T. This is where regular expressions
(regex) come in. Simply put, a regular expression describes a finite range of
possibilities. Unix, Perl and other programming languages use a fairly standard way of
implementing regular expressions (so anything you learn about them in Perl, will be very
useful if you use Unix commands like 'grep' or 'sed').

Task P17.2: Delete lines 6–10 and replacing them with these:

6. if ($seq =~ m/CC./){
7. print "Contains proline ($&)\n";
8. }

Well that was easy! In the context of regular expressions, the dot (.) on line 6 represents
any single character. It should not be confused with the use of a dot as the concatenate
operator.

Line 7 contains a funny variable called $&. This is sort of like $_. Perl sets $& to the
string matched by the most recent regular expression match.

Unix and Perl Primer for Biologists

101

http://en.wikipedia.org/wiki/Regular_expressions
http://en.wikipedia.org/wiki/Regular_expressions

Task P17.3: Change the regex to now see whether the sequence contains an arginine
codon.

6. if($seq =~ m/CG./){
7. print "Contains arginine ($&)\n";
8. }

If you copied the sequence exactly as above, your script should be telling you that the
$seq variable contains an arginine codon, even though it doesn't. Can you see why?

The dot character will match any character, including a space. So the last two letters of
the ACG codon plus the space that follows matches the pattern. A better solution is to
restrict the match to any character that is within a specified set.

Task P16.4: Replace line 6 with this more specific pattern.

6.	 if ($seq =~ m/CG[ACGT]/) {

The square brackets allow you denote a number of possible characters, any of which
can match (this is known as specifying a character class). This is a much better solution
when we have a limited range of characters. Note though, that even when you have
many characters inside the square brackets, you are only ever matching one character
in the target sequence.

Biological sequences are sometimes represented as upper case and sometimes lower
case. How do you handle this?

Task P16.5: Go back to line 5 and substitute some of the capital letters for lower case
as in the example below.

5.	 my $seq = "ACG TAC GAA GAC ccA ACA GAT AGC gcg TGC CAG aaa TAG ATT";

There are two solutions to matching both upper and lower case. The first one is to use
the square brackets to spell out every possible combination of upper or lower case
letters that specify CCN.

6.	 if ($seq =~ m/[Cc][Cc][ACGTacgt]/){	

The 2nd option is much simpler. Use the ignore-case functionality of the matching
operator. This just involves appending an 'i' after the second forward slash, and this will
now mean that ccc, ccG, cCa, CaT, etc. will all count as a valid match.

6.	 if ($seq =~ m/GG[ACGT]/i){

Unix and Perl Primer for Biologists

102

Because there is no uppercase or lowercase standard for sequence files, it is good to
always use the ignore-case option when working with sequences. This also works with
the substitution operator. An alternative is to always convert a sequence to upper or
lower case before you start processing it. The uc() and lc() functions perform these
operations.

Another useful option when specifying a character class is to use a dash to specify a
range of characters or numbers.

9. if ($seq =~ m/[a-z]/){
10. print "Contains at least one lower case letter\n";
11. }

Perl defines several symbols for common character classes. Two of the most useful
ones are \s and \S which are used to match whitespace and non-whitespace
respectively.

Anchors

To ensure that a pattern matches the beginning or ending of a string, one uses the ^
and $ symbols. This is the same as when using regexes in Unix.

Anti-classes

You can also specify characters that should not occur. Unfortunately, the ^ symbol is
reused. But it is used inside square brackets. [^A] matches anything except capital A.
\S is equivalent to [^\s].

Repetition

If you want to match several characters or character classes in a row, you use repetition
symbols. /A+/ matches 1 or more As. If you want to match exactly 5 As, you could
write /AAAAA/ or /A{5}/. To match a range, you specify the minimum and maximum
number of characters such as /A{3,5}/. You can also specify zero or one with /A?/ and
zero or more with /A*/.

Alternation

You can match more than one pattern at once if you separate them with pipe symbols.
To match all stop codons you would use

	 /TAA|TAG|TGA/;

Unix and Perl Primer for Biologists

103

http://perldoc.perl.org/functions/uc.html
http://perldoc.perl.org/functions/uc.html
http://perldoc.perl.org/functions/lc.html
http://perldoc.perl.org/functions/lc.html

Backslash

Any of the special reserved characters can be matched by prefixing with a backslash.
Therefore, you can match a dot (.) with \. and it will only match a dot. The backslash is
also used to escape the special meaning of other characters in Perl. What if you wanted
to print the value of the variable $answer but also include the text “$answer” in the
output string? Or what if you wanted to print “\n” but not have it print a a newline?

	 my $answer = 3;
	 print "\$answer is $answer\n";
	 print "This is a newline character: \\n\n";

The full set of Perl regular expression characters

Symbol Meaning
. any character
\w alphanumeric and _
\W any non-word character
\s any whitespace
\S any non-whitespace
\d any digit character
\D any non-digit

character
\t tab
\n newline
* match 0 or more times
+ match 1 or more times
? match 1 or 0 times

{n} match exactly n times
{n,m} match n to m times

^ match from start
$ match to end

Unix and Perl Primer for Biologists

104

P18. Extracting text
You will often want to extract some strings from a large file. For example, you may be
processing a GFF or GenBank file to retrieve specific coordinates or features. Hopefully
you will not be parsing HTML for email addresses! The power of regexes not only fuels
bioinformatics, but also spam.... There are a number of ways to pull out specific patterns
from a file. We have seen a couple of these already. $& contains the string of the last
pattern match. But this doesn't let you extract multiple strings at once, so it has limited
use. If you happen to be parsing a tab-delimited file, rejoice because you can just use
split.

1. while (<>) {
2. my @fields = split("\t", $_);
3. }

If the file happens to be space-delimited, you can even abbreviate further.

2. my @fields = split; # \s+ and $_ are assumed

But you won't always have tab-delimited text. Some files are much more complex.

Task P18.1: Let's retrieve all the gene names and coordinates from a GenBank file.
Take a look at the file Unix_and_Perl_course//Data/GenBank/E.coli.genbank and scroll
down until you find the 'gene' keyword.

FEATURES Location/Qualifiers
 source 1..4686137
 /organism="Escherichia coli str. K12 substr. DH10B"
 /mol_type="genomic DNA"
 /strain="K-12"
 /sub_strain="DH10B"
 /db_xref="taxon:316385"
 gene 190..255
 /gene="thrL"
 /locus_tag="ECDH10B_0001"
 /db_xref="GeneID:6058969"

The coordinates of the gene are given on the same line. One line below contains the
gene name as /gene="thrL". Page down a bit and you will find a gene on the
complement strand.

 gene complement(5683..6459)
 /gene="yaaA"
 /locus_tag="ECDH10B_0006"
 /db_xref="GeneID:6061859"

Unix and Perl Primer for Biologists

105

In order to parse this file, we must deal with genes on the complement strand and also
the fact that all the information isn't on the same line. The following program reports the
name and coordinates of all genes.

1. #!/usr/bin/perl
2. # parse_genes.pl
3. use strict; use warnings;
4.
5. while (my $line = <>) {
6. if ($line =~ /^\s{5}gene/) {
7. my ($beg, $end) = $line =~ /(\d+)\.\.(\d+)/;
8. $line = <>;
9. my ($name) = $line =~ /.*="(.+)"/;
10. print "$name $beg $end\n";
11. }
12. }

Lines 1–5 should look very familiar by now.

Line 6 asks if $line starts with 5 spaces (^\s{5}) followed by the word 'gene'. GenBank
format is very strict about how many spaces begin each line. Had we been lazy, we
could have used \s* or \s+.

Line 7 extracts the coordinates from $line and assigns them to the $beg and $end
variables. Regular expressions in list context return values from parenthesized patterns.
You might want to repeat the phrase a dozen times or so. It's that important.

Line 8 gets another line of input because the gene name is one line below.

Line 9 extracts the name using (.+) because gene names sometimes contain strange
characters and spaces, even though they don't in E. coli. Nearly all CDSs have a gene
name, but because a few donʼt we have to captures lines that match either a /gene= or
a /locus_tag= pattern. This is enabled by using the .* pattern.

More Info

We've only scratched the surface of regular expressions. For more information, read the
Perl man pages.

man perlrequick
man perlre

Unix and Perl Primer for Biologists

106

P19. Boolean logic
Back in P13.2 we saw the following statement. The meaning was pretty clear: open the
file or die trying.

open(IN, "<$ARGV[0]") or die "error reading $ARGV[0] for reading";

We understood the 'or' as something that only happens if the file doesn't open. How
exactly does that work? All Perl functions return a True or False value. False values are
0 and the empty string "". All other values are true. So we can understand the open()
statement above as a more concise version of the following.

$return_value = open(IN, "< $ARGV[0]);
if ($return_value == 0) {
	 die "can't open file $ARGV[0]\n";
}

But why doesn't the die() statement get executed if the return value is True? Because
the whole statement from open() to the semicolon is evaluated with Boolean logic. The
Boolean operators are 'and', 'or', 'not'. Let's review how 'and' and 'or' behave.

True and True = True
True and False = False
False and True = False
False and False = False
True or True = True
True or False = True
False or True = True
False or False = False

If the open() function works, then the entire Boolean expression "open() or die" will be
True. Perl does not attempt to evaluate more than it needs. So once open() succeeds, it
short-circuits the rest of the statement.

Back in P11.1 we saw this statement. What's going on here?

@list = sort {$a <=> $b or uc($a) cmp uc($b)} @list

The sorting function first compares $a and $b numerically. If their numeric values are
zero (e.g. because they are strings), the expression $a <=> $b returns zero. Perl must
then evaluate the right side "uc($a) cmp uc($b)" to determine if the whole expression is
true or false. So numbers get compared first, and if they are equal, they are further
compared by ASCII value.

Unix and Perl Primer for Biologists

107

Project 4: Codon usage of a GenBank file
The goal of this project is to create a codon usage table for any bacteria in GenBank.
For example, we could calculate the codon usage of E. coli, B. subtilis, or Y. pestis. You
will find GenBank files for several bacteria in the Data/GenBank directory. You will use
this program to analyze them. Later, we will compare them with Information Theory! But
that is for another day.

Use the Unix command less to look at the E. coli file. Page down a bit and you will see
many protein translations. At the end of the file you will find the genome sequence. Your
tasks are to retrieve the nucleotide sequences that correspond to these proteins and
then count the codons in each coding sequence. Sounds challenging, and it is. But we
have the knowledge to do it.

The strategy you will use for this program is outlined below:

1. Create a $genome variable to hold the sequence
2. Open the GenBank file
3. Skip all lines until you get to the sequence
4. Process each sequence line

4.1. Remove all non-sequence characters
4.2. Add the sequence to $genome

5. Close the GenBank file
6. Re-open the GenBank file
7. Process each line

7.1. Find line with CDS
7.2. Retrieve the coordinates
7.3. Extract the DNA sequence from the genome
7.4. Reverse-complement if necessary
7.5. Count codons

8. Report frequencies of all codons

Tips

• Make sure that the coding sequences are correct. Most should start with ATG and end
with a stop codon. If they do not, you may need to improve your code.

• Remember that sequence coordinates are 1-based but substr() is zero-based. You
will have to subtract 1 from the sequence coordinates.

• Some proteins may contain the peptide 'CDS' (cysteine-aspartate-serine) in them. So
be careful with your regex.

• Don't use this program with eukaryotes. Describing the joins of the various exons can
take several lines, which makes parsing the file a little more difficult.

Unix and Perl Primer for Biologists

108

P20. Functions (subroutines)
We've seen several built-in functions already such as print() and rand().
Programming would be pretty difficult if we didn't have these. Wouldn't it be great to
make your own functions? This is where the real power of programming lies. In Perl, we
can make our own functions by using subroutines.

Task P20.1: Create the following program. It takes a DNA sequence that you specify on
the command-line and runs three simple checks to see whether the sequence might
represent a valid CDS. If the sequence fails any check, an error message is printed:

1. #!/usr/bin/perl
2. # sequencecheck.pl
3. use strict; use warnings;
4.
5. # take sequence from command-line and make upper case
6. my $seq = uc($ARGV[0]);
7.
8. if ($seq !~ m/^ATG/){ # test for start codon
9. 	 print_error();
10. }
11. elsif($seq !~ m/TGA|TAG|TAA$/){ # test for stop codon
12. 	 print_error();
13. }
14. elsif($seq !~ m/^[ACGTN]?$/){ # test for non DNA characters
15. 	 print_error();
16. }
17. else{
18. 	 print "$seq looks likes a valid CDS\n";
19. }
20.
21. sub print_error {
22. 	 print "$ARGV[0] is not a valid sequence for a CDS\n";
23. 	 print "It may not start with an ATG start codon\n";
24. 	 print "It may not end with a stop codon\n";
25. 	 print "It may contain non ATCGN DNA characters\n";
26. }

Lines 9, 12, and 15 all call calls the print_error() subroutine which is declared on line
21. Subroutines behave just like any other Perl function, but unlike built-in functions like
print(), you must include parentheses. To declare a function/subroutine, you use the
sub keyword. This is immediately followed by the name of the function and a block
structure delimited by curly braces.

Unix and Perl Primer for Biologists

109

This script is not a very good script, it prints the same error message regardless of what
error is found in the sequence. However, you should see that by using a subroutine we
only need to write the code to produce the error message in one place.

Task P20.2: When we use subroutines it is far more common to pass the subroutine
one or more variables and get the subroutine to do something useful with those
variables. Create the following program. It reads a file of sequences and computes the
GC% of each one.

1. #!/usr/bin/perl
2. # gc.pl
3. use strict; use warnings;
4.
5. while (my $seq = <>) {
6. chomp($seq);
7. gc($seq);
8. }
9.
10. sub gc {
11. my ($seq) = @_;
12. $seq = uc($seq); # convert to upper case to be sure
13. my $g = $seq =~ tr/G/G/;
14. my $c = $seq =~ tr/C/C/;
15. my $gc = ($g + $c) / length($seq);
16. print "GC% = $gc\n";
17. }

Before you run this script you will need to create a text file which contains a few lines of
DNA characters. Use the name of the when you run the script e.g. gc.pl dna_file.txt

Lines 7 calls the gc() subroutine and passes it the $seq variable. To pass a variable to
a subroutine, include it between the parentheses that follow the subroutine name.

Lines 10–17 contain the gc() function. Because line 7 passes a variable to the
subroutine, we must add code to receive it. Subroutines receive arguments via the
special @_ array. Variables that are passed to the subroutine are stored in the @_ array.
Note that $seq is used again within the subroutine, we'll explain why in the next section.
For now, just accept that the $seq in the subroutine is unrelated to the other $seq.

Line 11 shows a typical list assignment, the first element of the @_ array is copied to
$seq. You may see some programs using the shift() function to remove elements of
the @_ array. E.g.

my $seq = shift(@_);
my $seq = shift;

Unix and Perl Primer for Biologists

110

In the second example, shift is used without specifying an array name. If no array is
specified the shift function uses the @_ array by default.

Anything passed to the @_ array is copied. This means that line 7 is effectively sending a
copy of $seq to the gc() subroutine. In other words, $seq is unchanged by gc(). You can
test this by adding a print "$seq\n" statement after line 7.

Subroutines can be defined anywhere in a program. It's common to put them at the end
of a Perl program. In other languages you might find them at the beginning. You can do
it either way, but try to be consistent.

Task P20.3 The previous program demonstrated a much better use of subroutines, but
it is still not ideal. Maybe we don't always want to print the value of GC% as soon as we
calculate it. In general, we often want a subroutine to calculate something and send that
back to wherever we called the subroutine from. We can do this in Perl by using return
values within a subroutine. Let's make a script that uses the melting temperature code
that we saw earlier in P15.1, but that now puts it in a subroutine

1. #!/usr/bin/perl
2. # tm.pl
3. use strict; use warnings;
4.
5. while (my $seq = <>) {
6. chomp($seq);
7. my $tm = tm($seq);
8. print "Tm = $tm\n";
9. }
10.
11. # calculate Tm
12. sub tm{
13. my $seq = shift;
14. my $A = $seq =~ tr/A/A/;
15. my $C = $seq =~ tr/C/C/;
16. my $G = $seq =~ tr/G/G/;
17. my $T = $seq =~ tr/T/T/;
18. my $tm = 2 * ($A + $T) + 4 * ($C + $G); # simple Tm formula
19. return($tm)
20. }

First of all, let's look at line 19. This line returns a value from the subroutine. You can
use return anywhere in the function and it will exit at that point. I.e. if there was a print
statement on line 20, it would never be performed. You can return multiple values in a
return statement or even none. Sometimes we just return 1 or 0 to indicate success or
failure.

Unix and Perl Primer for Biologists

111

So what happens with that returned value? If we now look at line 7 we can see that the
output of the tm() function is assigned to a variable.
If we had wanted to make our code more concise (which is not always a good thing) we
could have replaced lines 7 and 8 with:

print "TM = ", tm($seq), "\n";

If we didn't need to store the melting temperature in a variable, then we could just
include it in a print() statement. We could also have replaced lines 18 and 19 with the
following:

return(2 * ($A + $T) + 4 * ($C + $G));

In this case, Perl will first make the calculation of the melting temperature and return the
resulting value. Most people find it easier to first store this result into a variable and then
return the variable.

Task 20.4: So far we have only ever passed one variable to a subroutine and returned
just one thing back to the calling function. It is very common to pass and return multiple
arguments. It is also common to have multiple return statements which are all
dependent on the outcome of some logical test.

Modify the GC% script in order to pass two things to the subroutine: the sequence plus
a GC% threshold (a floating point number which will be stored in a $threshold variable
within the subroutine). If the GC content is above the value of $threshold then we will
return "High GC" else we will return "Low GC".

To simplify things, you can specify the sequence and the threshold value on the
command line (instead of reading a file). We also want the script to print out whether
each sequence is high or low GC, but that print statement must not be in the subroutine!
You will have to look up how to pass two things to a subroutine. The end of the
subroutine will look like the following:

Unix and Perl Primer for Biologists

112

sub gc {
 #
 # missing code to go here
 #

 $seq = uc($seq); # convert to upper case to be sure
 my $g = $seq =~ tr/G/G/;
 my $c = $seq =~ tr/C/C/;
 my $gc = ($g + $c) / length($seq);

 if($gc > $threshold){
	 return("High GC");
 }
 else{
	 return("Low GC");
 }
}

Why use subroutines?

As your programs get longer you might find yourself wanting to do the same thing more
than once in your program. Maybe part of your program takes two input sequences and
calculates the percentage similarity. Your program might then modify those sequences
and then recalculate the percentage similarity. Without subroutines you would have to
have the same lines of code in two places in your script. This is a bad idea. Where
possible, code should be reused. As soon as you find yourself writing the same code in
more than one place, you should think about putting that code in a subroutine.

Subroutines can also help improve the readability of your code. Rather than see all of
the details of how you calculate some mathematical function, it might be cleaner to keep
that code in a subroutine and this keeps it hidden from the main body of the code.

Unix and Perl Primer for Biologists

113

P21. Lexical variables and scope
By default Perl lets you create variables whenever you need them and they are then
available throughout your entire program. We call this global scope. Many people would
argue that using global variables is dangerous and certainly not the best way of
programming. Instead, we could (and should) use local variables. This is something that
we have already made you do in nearly all of these Perl scripts. That's because when
we include the use strict; statement this requires that we need to declare all variables,
arrays, and hashes with 'my'. The my statement means that we are declaring a local
variable.

Consider the following program that deliberately does not contain the use strict;
statement. The program takes a sequence and counts how many codons it contains
(using a subroutine). Run the program and observe the output.

1. #!/usr/bin/perl
2. # no_strict.pl
3. use warnings;
4.
5. my $seq = "atg att gaa cca tga";
6. $codons = count_codons($seq);
7. print "$seq contains $codons codons\n";
8.
9. sub count_codons {
10. $seq = shift;
11. $seq = uc($seq); # convert to upper case to be sure
12. $seq =~ s/\s+//g; # remove all whitespace from sequence
13. $codons = length($seq) / 3;
14. return($codons);
15. }

Line 7 prints $seq but it now prints the version of $seq that was modified in the
subroutine. Without the my declarations, they are no longer separate variables. This is
probably not the behavior that we wanted. When we don't declare variables with my,
they become global variables. Changing that variable in any one part of the program
changes it everywhere else. We should never do this, it is just about the worst thing you
can do as a programmer.

To make sure we do not affect other parts of a program, we will always choose to make
variables inside a function exist only within that function. The my keyword does this for
us and it creates a lexical variable. A lexical variable lives and dies within a set of curly
braces (a block). This means that we can reuse variable names to store different things
as long as they exist within different blocks of code

Unix and Perl Primer for Biologists

114

Task P21.1: The following program demonstrates the use of lexical variables.

1. #!/usr/bin/perl
2. # lexical.pl
3. use strict; use warnings;
4.
5. my $x; # declaration without assignment
6. $x = 1;
7. my ($y, $z) = (2, 3); # you can declare and assign, even as list
8. if ($x < $y) {
9. my $z = 10;
10. print "inside: X = $x, Y = $y, Z = $z\n";
11. }
12. print "outside: X = $x, Y = $y, Z = $z\n";

It is critical that you completely understand the scope of a variable. The scope is from
the point it is declared until the enclosing curly bracket at the same logical level. There
is a $z variable that is born at line 9 and dies at line 11. Importantly, this $z is not the
same as the $z on line 7. The inner $z effectively hides the outer $z as soon as it is
declared.

Variables in a wider scope are visible in a narrower scope. So we can see $x and $y at
line 11. Variables in a narrower scope do not exist in a wider scope. To see this more
clearly, try changing lines 9 & 13 to to the following.

9. my ($z,$q) = (10,15);

13.	 print "outside: $x $y $z $q\n";

$q doesn't exist outside the loop because $q died at line 11.

Unix and Perl Primer for Biologists

115

Loop Variables

Lexical variables in loops look a little strange because they are declared outside the
curly braces.

1. for (my $i = 0; $i < 10; $i++) {
2.
3. }
4. foreach my $seq (@seq) {
5.
6. }

$i is declared on line 1 and dies at line 3. So even though it appears outside the curly
braces, its scope is actually the entire loop. $seq is born anew with each iteration of the
loop at line 4 and dies each time at line 6.

Safer programming: use strict

All variables should be lexical variables. To ensure this behavior, include "use strict" in
your programs. In fact, your programs should always contain a line like this.

use strict; use warnings;

You may run into someone who thinks that strict and warnings are a hassle. Feel free
to talk to, dine with, or even marry this person, but in no circumstances should you
share code with them!

Unix and Perl Primer for Biologists

116

P22. Sliding window algorithms
One of the most common sequence analysis scenarios is to look at the local
composition of a sequence rather than the global. For example, a genome might be
45% GC, but it might be more GC-rich in CpG islands and less GC-rich in introns.
Similarly, a protein may have hydrophobic and hydrophilic regions, and you might want
to identify these.

Task P22.1: Create the following program and run it with a few window sizes to observe
the smoothing effect of larger window sizes. In this algorithm, there are two loops. The
outer loop moves the window along the sequence. The inner loop counts the
nucleotides inside the window. Note that to make sure all the windows are the same
size and that the last few windows do not run off the end of the sequence, we have to
stop the sliding before it gets to the end. The conditional part of line 9 might look a bit
strange ($i < length($seq) - $window +1), but that's what it does.

1. #!/usr/bin/perl
2. # sliding.pl
3. use strict; use warnings;
4.
5. die "usage: sliding.pl <window> <seq>" unless @ARGV == 2;
6.
7. my ($window, $seq) = @ARGV;
8.
9. for (my $i = 0; $i < length($seq) - $window +1; $i++) {
10. my $gc_count = 0;
11. for (my $j = 0; $j < $window; $j++) {
12. my $nt = substr($seq, $i + $j, 1);
13. $gc_count++ if $nt =~ /[GC]/i;
14. }
15. printf "%d\t%.3f\n", $i, $gc_count/$window;
16. }

Task P22.2: Here is an alternative approach using a single loop that reuses our gc()
function. Replace lines 11-15 with the following two lines and then copy the gc()
subroutine into the script. This strategy is slightly less efficient because there is some
overhead in every function call. But I think you will agree that it reads much better!

8. my $subseq = substr($seq, $i, $window);
9. printf "%d\t%.3f\n", $i, gc($subseq);

Unix and Perl Primer for Biologists

117

Task P22.3: Did you notice that both of the previous sliding window algorithms recount
the same bases? Imagine a window of 1000 bases. The total number of Cs and Gs is
not going to change much as the window slides over one more position. In fact, the
number of Gs or Cs can only change by plus or minus 1. Why count 1000 letters when
you only need to change one value? You don't have to. If you count the Cs and Gs in
the initial window, you can then update the counts as you slide along. This algorithm
turns out to much more efficient for large windows. You might want to come back to this
task at a later time. It's doesn't introduce any new concepts, but the code is definitely
more complicated.

1. #!/usr/bin/perl
2. # sliding_fast.pl
3. use strict; use warnings;
4.
5. die "usage: sliding_fast.pl <window> <seq>" unless @ARGV == 2;
6. my ($window, $seq) = @ARGV;
7.
8. # initial window
9. my $gc_count = 0;
10. for (my $i = 0; $i < $window; $i++) {
11. my $nt = substr($seq, $i, 1);
12. if ($nt =~ /[CG]/i) {$gc_count++}
13. }
14. printf "%d\t%.3f\n", 0, $gc_count/$window;
15.
16. # all other windows
17. my $limit = length($seq) - $window + 1;
18. for (my $i = $window; $i < $limit; $i++) {
19. my $prev = substr($seq, $i -1, 1);
20. my $next = substr($seq, $i, 1);
21. if ($prev =~ /[CG]/i) {$gc_count--}
22. if ($next =~ /[CG]/i) {$gc_count++}
23. printf "%d\t%.3f\n", $i -$window +1, $gc_count/$window;
24. }

Sometimes you must choose between readability and speed. Most of the time, you
should let readability take precedence. Why? Because readable code is easier to debug
and maintain. If you absolutely need something to run faster, there are a variety of
possible solutions including (a) buying a faster computer (b) changing the structure of
the algorithm (c) programming in a compiled language such as C.

Unix and Perl Primer for Biologists

118

P23. Function libraries
Once you develop some useful functions like gc(), you will find that you want to use
them again and again. One way to re-use code is to simply copy-paste your functions
from one program to another. Since functions are like mini programs, this usually works
just fine. But what if you discover an error in the function and now you want to fix all the
programs that use it? You'll have to search all your programs and fix each one. Wouldn't
it be better if the programs all used the exact same code? Absolutely!

A function library is a file where you keep a group of related functions. Any program you
write can use these functions. Having your own personal library makes programming
much simpler. But the real power of libraries comes when you use other people's
libraries. The only thing better than your function library is someone else's. Enough talk,
let's create our first library.

Perl uses the term package or module for function library. They (mostly) mean the same
thing. All Perl modules are saved with the .pm suffix (for Perl module). The first line of a
module uses the package statement and the last line is simply 1;. All of the functions go
between those statements. There is no limit to the number of functions you can place in
a library.

Task P23.1: Save the following code as Library.pm. This is not a particularly descriptive
name, but it will do for now.

1. package Library;
2. use strict; use warnings;
3.
4. sub gc {
5. my ($seq) = @_;
6. $seq = uc($seq); # convert to upper case to be sure
7. my $g = $seq =~ tr/G/G/;
8. my $c = $seq =~ tr/C/C/;
9. my $gc = ($g + $c) / length($seq);
10. return $gc;
11. }
12.
13. 1;

The gc() function can now be used in any program you write as long as Library.pm is in
the same directory as the script that wants to use it. Now let's see how we use libraries.

Unix and Perl Primer for Biologists

119

Task P23.2: Go back to sliding.pl and insert the line "use Library;". One generally puts
such statements at the top of a program, but you can put them anywhere. This simple
statement allows the program to use any of the functions in the library. To call gc(), we
must prepend the function call with the library name Library::gc() as in line 9. The
reason for this is that we might be using several libraries. So Library::gc() and
OtherLibrary::gc() are separate functions.

1. #!/usr/bin/perl
2. # sliding.pl
3. use strict; use warnings;
4. use Library;
5.
6. die "usage: sliding.pl <window> <seq>" unless @ARGV == 2;
7. my ($window, $seq) = @ARGV;
8. for (my $i = 0; $i < length($seq) - $window +1; $i++) {
8. my $subseq = substr($seq, $i, $window);
9. printf "%d\t%.3f\n", $i, Library::gc($subseq);
10. }

Unix and Perl Primer for Biologists

120

Project 5: Useful functions
This project has a number of sub-projects, each of which is based around a new useful
function that you should add to your library.

Project 5.1: Create a function that reverse-complements a DNA sequence. Ideally, this
should even work if the sequence contains nucleotide ambiguity characters such as R,
Y, M, K, etc.

Project 5.2: Write a function that computes the entropy of a sequence. The entropy is
simply the sum of $x * log($x), where $x is the frequency of each letter. Unbiased
DNA has 2 bits of entropy. A biased composition results in less < 2 bits. To convert from
nats to bits, divide by log(2). Use the entropy function in combination with a sliding
window to find low entropy regions of a sequence.

Project 5.3: Using the standard genetic code, write a function that returns the
translation of a nucleotide sequence. Use an 'X' for an ambiguous codon and a * for a
stop codon. Write a program using this function finds the longest ORF in a sequence.

Project 5.4: Write a function that returns the codon frequencies in a GenBank file. The
function should take a file name as the argument, and return the frequencies in either a
hash or array. You should be able to modify your code from Project 4.

Project 5.5: Write a program that compares the codon usage of two bacteria. Use
Kullback-Leibler distance (relative entropy) to compare the codon frequencies. K-L
distance is the sum of $x * log($x / $y) where $x is a codon frequency in one
genome and $y is the the frequency of the same codon in another genome. Experiment
with several bacteria.

Project 5.6: Membrane-spanning regions of proteins are hydrophobic. To find potential
trans-membrane domains, create a Kyte-Doolittle hydropathy function. For this you will
need to look up the hydrophobicity of each amino acid and calculate the average
hydrophobicity in a sliding window. The function should print all the hydrophobicity
values. Alternatively (and better), the function can return an array of values.

Unix and Perl Primer for Biologists

121

P24. Interacting with other programs
Let's say you want to run BLAST 1000 times and retrieve the output. No problem, there
are a number of ways to get information from other programs into your program. The
simplest one is the backticks operator (`). This looks like an apostrophe but is actually a
different character and will be hiding somewhere on your keyboard. Whatever you put in
backticks will be executed in the Unix shell, and the output will be returned to you in an
array or scalar depending on how you asked for it.

Task P24.1: Let's try an example. Before you run the program, try to predict what will be
stored in the @a array (note that this is a deliberately bad name for an array. When you
work out what is being stored in @a, rename the array to something that makes more
sense to you).

1. #!/usr/bin/perl
2. # system.pl
3. use strict; use warnings;
4.
5. my @files = `ls`;
6. print "@files\n";
7. my $file_count = `ls | wc`;
8. print "$file_count\n";

Another way to run an external program is with a system() call. Whatever you put into a
system() call is run just like the Unix command line. Unlike the open() function which
returns 0 when it fails, the system() function returns 0 when it succeeds (there are good
reasons for this, but for now let's just be angry about it). It is generally preferable to use
the system function rather than backticks as this gives you more control of testing
whether the Unix command that you run actually worked or not. Add the following lines
to your program.

9. system("ls > foo") == 0 or die "Command failed\n";

You now have a file called foo that contains your file list. To get this into your program
you can use open() as we have seen before. On line 11 we introduce a shorthand for
reading all the lines of a file at once. Be careful with this because you could run out of
memory if you slurp up a big genome.

10. open(IN, "< foo") or die "Can't open foo\n";
11. my @files = <IN>; # reads the entire file into @files
12. close IN;
13. foreach my $file (@files) {print "$file\n"}

You will most commonly use file handles to read from files, or write to files. However, file
handles can also be used in connection with 'pipes' which act just like pipes in Unix. So

Unix and Perl Primer for Biologists

122

http://perldoc.perl.org/functions/system.html
http://perldoc.perl.org/functions/system.html

you can establish a file handle which acts as a pipe that receives input from a Unix
command (go back to the Unix lesson if you need a reminder). The program is run, and
the output of the Unix command is sent directly to the file handle.

14. # file handle 'IN' will now receive output from the 'ls' command
15. open(IN, "ls |") or die;
16. while (my $line = <IN>) {
17. print "file: ", $line;
18. }

If we reverse things and put the pipe after the file handle, then we can even use open()
to send commands to a program!

19. # the file handle OUT will now connect to the Unix wc command
20. open(OUT, "| wc") or die;
21. print OUT "this sentence has 1 line, 10 words, and 51 letters\n";
22. close OUT;

Unix and Perl Primer for Biologists

123

P25. Options processing
It is useful for your programs to have command line options that allow them to behave in
different ways. For example, ls lists the current directory, but if you want to see which
files sorted by date, you type ls -lt. Your Perl programs can have this same behavior.
There are two built-in modules for processing command line options, Getopt::Std and
Getopt::Long.

Do you wonder what the :: means in Getopt::Std? This is a scope divider. It's like a sub-
folder. So Getopt::Std and Getopt::Long both exist inside a hierarchy with Getopt as the
parent. It happens that there is a folder called Getopt and inside this are files called
Std.pm and Long.pm. If you like hierarchy, you can make your libraries have this kind of
structure, but it is not usually necessary.

Take a minute to view the documentation for Getopt::Std and Getopt::Long. You don't
have to read them in depth, but just know that you can read the Perl documentation for
most modules with a quick command line.

perldoc Getopt::std
perldoc Getopt::Long

To use Getopt::Std, you must first define global variables called $opt_something where
the something is a single letter. For example if you wanted a command line option -v to
indicate that the program should display its version number, you need a global variable
called $opt_v. To define a global variable, you can use the "use vars" method or the
"our" method (sort of like "my" except for global rather than lexical variables). Both
syntaxes are displayed below.

You also have to tell Getopt::Std that you want to parse the command line. You do this
with the getopts() function. The syntax is a little strange. If the option takes arguments,
you follow the letter with a colon. So, getopts('x') signals that -x takes no arguments
while getopts('x:') signals that -x requires an argument. The example below shows
how you can mix both kinds.

Try running the program below with a bunch of different options and see what happens.
Note that the options are removed from the command line. So @ARGV never contains the
options.

Unix and Perl Primer for Biologists

124

1. #!/usr/bin/perl
2. # getopt.pl
3. use strict; use warnings;
4. use Getopt::Std;
5. use vars qw($opt_h $opt_v);
6. our $opt_p; # alternative to our()
7. getopts('hvp:');
8.
9. my $VERSION = "1.0"; # it's a good idea to version your programs
10.
11. my $usage = "
12. usage: getopt.pl [options] <arguments...>
13. options:
14. -h help
15. -v version
16. -p <some parameter>
17. ";
18.
19. if ($opt_h) {
20. print $usage; # it's common to provide a -h to give help
21. exit;
22. }
23.
24. if ($opt_v) {
25. print "version ", $VERSION, "\n";
26. exit;
27. }
28.
29. if ($opt_p) {print "Parameter is: $opt_p\n"}
30.
31. print "Other arguments were: @ARGV\n";

Lines 21 and 26 introduce the exit() function. This terminates the program immediately
without producing an error message like die().

Unix and Perl Primer for Biologists

125

http://perldoc.perl.org/functions/exit.html
http://perldoc.perl.org/functions/exit.html

P26. References and complex data structures
One of the reasons Perl is so powerful is that you can create complex data structures
very easily. In this final section, we give a brief introduction to references, which are the
foundation of complex data structures and other advanced programming concepts.
Once you start to use references, you will find that they open up a whole new level of
programming.

Multi-dimensional Arrays

So far, all of our arrays have been one-dimensional. But you can make them multi-
dimensional with ease. If you assume the extra dimensions exist, Perl will create them
for you.

my @matrix;
$matrix[0][0] = 1;
$matrix[0][1] = 5;
$matrix[1][0] = 3;
$matrix[1][1] = 2;
for (my $i = 0; $i <= 1; $i++) {
 for (my $j = 0; $j <= 1; $j++) {
 print "value at $i, $j is $matrix[$i][$j]\n";
 }
}

References

Up to now, we have never passed two arrays or hashes to a subroutine. Why? Because
the arrays would get damaged by passing through @_. Consider the following code:

sub compare_two_arrays {
 my (@a, @b) = @_;
}

The intent is to fill up @a and @b from @_. Unfortunately, in list context, Perl cannot
determine the size of the arrays. So what happens is that @a gets all of the data and @b
gets none. But surely, we want to be able to make comparisons of arrays. To do this, we
must turn an array into a scalar value. This is done quite simply with the backslash \
operator. To dereference a particular element of the array, we use the arrow operator ->
and square brackets.

my @array = qw(cat dog cow);
my $array_ref = \@array;
print $array_ref->[0], "\n"; # prints cat

Unix and Perl Primer for Biologists

126

We can also create references to hashes and dereference them with the arrow operator.
Note that we use curly brackets here to show that the scalar value is a reference to a
hash.

my %hash = (cat => 'meow', dog => 'woof', cow => 'moo');
my $hash_ref = \%hash;
print $hash_ref->{cat}, "\n"; # prints meow

To dereference the entire array or hash, rather than a specific element, we use the {}
operator as follows.

print join("\t", @{$array_ref}), "\n";
foreach my $key (keys %{$hash_ref}) {
 print $key, "\t", $hash_ref->{$key}, "\n";
}

Anonymous Data

You can create a multi-dimensional array in a single statement.

my @matrix = (
 [1, 5],
 [3, 2],
);

Here, the arrays in square brackets are references to arrays. But these arrays have no
names, so they are called anonymous arrays.

In a multi-dimensional array, the first dimension is a reference to other dimensions.
References are scalar values, but they point to arrays, hashes, and some other types.
To dereference a scalar, you use the -> notation. In a multi-dimensional context, the ->
symbols are implied. Previously, we used $matrix[0][0], but this can also be
understood more explicitly as $matrix[0]->[0]. But use the former syntax, not the
latter.

When constructing multi-dimensional structures, the various dimensions can be hashes
or arrays, or a mixture. The dimensions need not even be the same size.

my @matrix = (
 [1, 2],
 {cat => 'meow', dog => 'woof', cow => 'moo'},
 [{hello => 'world'}, {foo => 'bar'}],
);
print $matrix[0][1], "\n";

Unix and Perl Primer for Biologists

127

print $matrix[1]{cat}, "\n";
print $matrix[2][1]{foo}, "\n";

Records

One of the most common places you will see a reference is a hash reference. These
are used to store record-like data.

my @authors = (
 {first => 'Ian', last => 'Korf', middle => 'F'},
 {first => 'Keith', last => 'Bradnam', middle => 'R'},
);
foreach $author (@authors) {
 print $author->{last}, ", ", $author->{first},
 " ", $author->{middle}, ".\n";
}

What next?
If you've come this far, you've done very well. You can now pick up a variety of Perl
books and start to learn more advanced and specialized topics. As always you will learn
Perl much more quickly if you have some real-world problems that you need to write a
script for. This doesn't have to be work related, if you have any text files that contain
data of some sort, then you can probably think of a Perl script to do something with that
data. E.g. you could work out the average rating of each artist in your iTunes library by
writing a script to parse the 'iTunes Music Library.xml' file that is produced by iTunes.

Sometimes the best way of improving your Perl is when you have to fix or improve
someone else's script. Seeing how other people code will give you ideas and make you
realize what works well and what doesn't. There is a lot of freely available Perl code on
the web (just search Google for "perl script to do x, y, and z) and you will often find that
you can adapt from other people's code. But it usually is much more fun to write your
own!

Unix and Perl Primer for Biologists

128

Troubleshooting guide

Introduction
The next few pages list many of the common error messages that you might see if you
are having problems with your Perl script. They are broadly divided into three
categories:

1) Errors that are caused before your Perl code is even evaluated
2) Errors in the code itself (most commonly, very simple syntax errors)
3) Other mistakes (sometimes achieved by great feats of stupidity)

If there is a problem with your script, you will sometimes see a lot of errors appear when
you try to run it. It pays to try to understand these error messages. With time, you will
become quicker at fixing errors, or at least knowing where to look first.

Many text editors like Smultron are specifically designed for working with programming
languages, and they can help you hear and see problems as you create them. Smultron
beeps to warn you if you have entered too many closing brackets or parentheses. It also
colors code that appears in between pairs of quotation marks, so you quickly see if you
have typed one quotation mark too many.

How to troubleshoot
Programming languages like Perl have sophisticated, and therefore complicated,
debugging tools. But for simple scripts, these tools can be overkill. Here is some simpler
advice to how to go about fixing your scripts:

1) Stay calm and don't blame the computer. In nearly all cases, the computer is only
ever doing what you have told it to do. Keeping a clear head will help you find the
problem.

2) Check and re-check your code. Most errors are due to simple typos in your script,
and sometimes you will be looking at the error without realizing that it is the error.

3) Start with the first error message that you see. Subsequent error messages often all
stem from the first problem in your script. Fix one, and you may fix them all.

4) If you think a problem is due to an error on a single line of code, then you can
comment out that line (by adding a # character to the start of the line). Then save and
re-run your script to see if it now works. If it does, then you have confirmed which line
contained the problem. Note that this is not appropriate for commenting out a single
line of a block of code, e.g. the first line of an if statement.

5) Sometimes a program will partly work, but fail at some point within your code.
Consider adding simple 'print' statements to work out where the program is failing.

Unix and Perl Primer for Biologists

129

Pre-Perl error messages
Permission denied

Do you have the permission to run your script, i.e. have you run chmod to add
executable permissions? This won't affect scripts located on a USB flash drive, but in
most 'real world' situations, you will always need to run the chmod command after
creating your Perl script.

bad interpreter: No such file or directory

Most commonly caused by a typo in the first line of your script. The first line of a Perl
script should let the Unix system know where it can find a copy of the Perl program that
will understand your code. This will usually be /usr/bin/perl. If you miss the first forward
slash, then the Unix system will try finding Perl (which is the interpreter of your code) in
the wrong place, and hence things will fail.

command not found

You've either mistyped the name of the program or your program is not in a directory
that the Unix system knows about (technically speaking the directory is not in your
path). Make sure that scripts are kept in the Code directory (otherwise you will need to
run them by using the perl command itself, e.g. perl myscript.pl)

Within-Perl error messages
Missing right curly or square bracket at script.pl line X , or...
Unmatched right curly bracket at script.pl line X

Hopefully these two error messages are both very obvious. [These are square brackets]
and {these are curly brackets}. Unless you are using them as text characters (e.g. within
a print statement), then they always come in pairs. Make sure that yours are in pairs.

Unix and Perl Primer for Biologists

130

syntax error at script.pl line X, near YYY

Syntax errors are among the most frequent errors that you will see. On the plus side,
they are usually very easy to fix. On the negative side, they can sometimes be very hard
to spot as they frequently involve a single character that is either missing or surplus to
requirements. Most commonly they might be because of:

unmatched parentheses - like brackets, items that are in (parentheses) should
always be a double act.

missing semi-colon - If you start writing some code, then it has to end (at some
point) with a semi-colon. The main exceptions to this rule are for the very first line
of a script (#!/usr/bin/perl) or when a line ends in a closing curly bracket '}'.
Also note that you can write one line of Perl code across several lines of your text
editor, but this is still one line of code, and so needs one semi-colon.

missing comma - Perl uses commas in many different ways, have you forgotten
to include one in a place where Perl requires one?

inventing new Perl commands and operators - if you write if ($a === $b), then
you have invented a new operator (===) which will cause a syntax error as Perl
will have no idea what you mean.

Can't find string terminator '"' anywhere before EOF at script.pl line X

Did you make sure that you have pairs of quotation mark characters? If you have an
odd number of single or double quotes characters, then you might see this error.

use of uninitialized variable in...

Your scripts will do many things with variables. You will add their values, calculate their
lengths, and print their contents to the screen. But what if the variable doesn't actually
contain any data? Maybe you were expecting to fill it with data from the command-line
or from processing a file, but something went wrong? If you try doing something with a
variable that contains no data, you will see this error.

Global symbol "$variable" requires explicit package name at

You wouldn't happen to be using the strict package and not declaring a variable with
'my' would you? If you definitely have included use strict; then maybe check that all
your variable names are spelled correctly. You might have introduced a variable as my
$apple but then later incorrectly referred to it as $appple.

Unix and Perl Primer for Biologists

131

Other errors
Program changes not saved

If you make changes to your program but don't save them, then those changes will not
be applied when you run the script. Always check that the script you are running is
saved before you run it. If you are using a graphical text editor on an Apple computer,
then you will always see a black dot within the red 'close window' icon on the top left of
a window when there are any unsaved changes.

Program that you are editing is not the same as program you are running.

Occasionally, you might make copies of your programs and your directory might end up
with programs named things like script1.pl, script1b.pl, script2.pl, new_script2.pl. This is
a bad habit to get into and you might find yourself editing one script but trying to run
another script. You will become very frustrated when every change you make to your
script has seemingly no effect.

Program runs with no errors but doesn't print any output

It might seem mysterious when your Perl program which you so carefully wrote, doesn't
seem to do anything. It is therefore worth asking yourself the question 'did I ask it to do
anything?'. More specifically, have you made sure your program is printing out any
output. Making your program calculate the answer to the life, the universe, and
everything is one thing...but if you don't print out the answer, then it will remain a
mystery.

Unix and Perl Primer for Biologists

132

Table of common Perl error messages

Error message Description/Solution

Argument "xyz" isn't numeric... Perl is expecting a number, and you have given Perl something
else, e.g. some text, or a variable containing text.

Array found where operator
expected...

An operator (e.g. +, ==, >, eq.) is missing and an array name has
been used instead

bad interpreter: No such file or
directory...

Check the 1st line of your script (#!/usr/bin/perl). You have
probably made a typo?

Bareword found where operator
expected...

Most likely due to a simple typo in a Perl operator. e.g. typing
'eqq' rather than 'eq'

Can't find string terminator '"'
anywhere before EOF...

Probably a mismatched pair of quotation marks. These should
come in pairs.

Can't locate xyz.pm in You've added a 'use' statement, but the module name you are
trying to use does not exist. Typo?

command not found Possible typo when you typed the script name in the terminal. Or
the script might not be in the Code directory.

Global symbol "$variable" requires
explicit package name at...

You probably forgot to include the 'use strict' line

Permission denied... Have you run the chmod command to give your script executable
permission?

print () on unopened filehandle... If your script is printing output to a file, you have to first open a
filehandle for the output file

Scalar found where operator
expected...

An operator (e.g. +, ==, >, eq.) is missing and a variable or array/
hash element has been used instead

Search pattern not terminated... When you use the matching operator (=~), there should be a pair
of forward slashes surrounding the search pattern

String found where operator
expected...

An operator (e.g. +, ==, >, <=, eq, etc.) is missing, and some text
has been added in it's place

syntax error at... Often due to a missing semi-colon/comma, or other typo (e.g.
typing 'g' instead of 'gt' or 'iff' intead of 'if')

use of uninitialized variable in... You are working with a variable (or array/hash element) that
doesn't contain any data, even though it probably should. This is
more common when the data is coming from a file or is specified
on the command-line.

Unix and Perl Primer for Biologists

133

Version history
2.3.4 - 11/13/09 - a couple of typo fixes and slight restructuring to transliteration routine

2.3.3 - 10/30/09 - Expanded on arrays and loops sections. More explanatory text is
given with more examples.

2.3.2 - 10/16/09 - Added a new section on how to trouble-shoot problematic Perl scripts,
with explanations of common error messages. Plus some more minor typo fixes.

2.3.1 - 10/9/09 - Minor typo fixes

2.3 - 9/29/09 - One new Perl task added to introduce the die function slightly earlier.
Added new Unix task to learn about converting newline characters.

2.2.1 - 8/2/09 - Fixed incorrect numbering for list of projects in Project 5 section

2.2 - 7/28/09 - Big change in that all examples (apart from first few) now have 'use
strict'. Changed some examples to be more biologically relevant. Added more hyperlinks
for Perl functions. Added graphical example of arrays. Expanded explanations in many
examples, particularly the section on subroutines which gains many new examples.

2.1 - 7/22/09 - Added Preamble section to explain how to go about this course on a
Windows machine. Added author bios. Changed directory structure for course files so
that everything is contained within one parent directory (ʻUnix_and_Perl_courseʼ). Broke
several of the Unix sections into smaller sections

2.05 - 7/17/09 - Some minor typos fixed

2.04 - 7/16/09 - Fixed minor typos. Expanded section on variables, and offered advice
on variable names. Simplified some print examples.

2.03 - 7/15/09 - Fixed minor typos. Expanded table of useful commands. Expanded
explanation of tr operator, @ARGV, and escaping via backslash character. Fixed E.coli
project example. Mentioned how to spot unsaved files in Mac editors. Moved tables
inline.

2.02 - 7/14/09 - ʻuse warningsʼ reinstated to all scripts. Table of contents added. Hash
bang line also included in all scripts. A few new sections added to Unix part of course,
including a table of commonly used Unix commands. Lots of small of formatting
changes to stop sections splitting over pages where possible.

2.01 - 7/13/09 - Miscellaneous typos fixed and text reworded to clarify.

Unix and Perl Primer for Biologists

134

2.00 - 7/12/09 - Revision based on feedback from course. Switched to PDF
documentation rather than HTML. Smaller, more focused exercises.

1.00 - First taught course to grad students in UC Davis in Fall 2008

0.5 - Brief Unix/Perl training material written to help new students who join our lab

Unix and Perl Primer for Biologists

135

