
Course organization 

• Introduction ( Week 1-2)
– Course introduction

– A brief introduction to molecular biology

– A brief introduction to sequence comparison

• Part I: Algorithms for Sequence Analysis (Week 3 - 8)
– Chapter 1-3, Models and theories

» Probability theory and Statistics (Week 3)

» Algorithm complexity analysis    (Week 4)

» Classic algorithms   (Week 5)

– Chapter 4. Sequence alignment (week 6)

– Chapter 5. Hidden Markov Models ( week 7）
– Chapter 6. Multiple sequence alignment (week 8)

• Part II: Algorithms for Network Biology (Week 9 - 16)
– Chapter 7. Omics landscape (week 9)

– Chapter 8. Microarrays, Clustering and Classification (week 10)

– Chapter 9. Computational Interpretation of Proteomics (week 11)

– Chapter 10. Network and Pathways (week 12,13) 

– Chapter 11. Introduction to Bayesian Analysis (week 14,15)

– Chapter 12. Bayesian networks (week 16)
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A scientist who has learned how to use probability theory 
directly as extended logic has a great advantage in power and 
versatility over one who has learned only a collection of 
unrelated ad hoc devices.   

– E. T. Jaynes, 1996



Contents

• Reading materials

• Applications

• Introduction

– Definition

– Conditional, joint, marginal probabilities

– Statistical inference

• Bayesian statistical inference

• Frequentist inference

– Information theory

– Parameter estimation
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.

Durbin book:

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological 

Sequence Analysis. Cambridge University Press.

(Errata page: http://selab.janelia.org/cupbook_errata.html)

DeGroot, M., Schervish, M., Probability and Statistics (4th Edition) 

.

Reading

Other recommended background 
Jaynes, E.T., 

Probability Theory: The logic of Science, Cambridge University Press, 2003 

4

http://selab.janelia.org/cupbook_errata.html


Probability theory 
for biological sequence analysis

Applications

 BLAST significance tests

 The derivation of BLOSUM and PAM scoring matrices

 Position Weight Matrix (PWM or PSSM)

 Hidden Markov Models (HMM)

 Maximum likelihood methods for phylogenetic trees
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Probability theory 
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 Examples:

 A fair dice:

 A random nucleotide sequence: 

 “i.i.d.”: independent, identically distributed
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Probability theory 
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 Definition of random

 Bertrand paradox (1898)

 Consider an equilateral triangle inscribed in a circle, 

a chord of the circle is chosen at random,  what is 

the probability that the chord is longer than a side of 

the triangle? 



Classical Terminology

Experiment:  E.g. toss a coin 10 times or 

sequence a genome

Outcome: A possible result of an experiment,

E.g HHTHTTHHHT or ACGCTTATC

Sample space: The set of all possible 

outcomes of some experiment

E.g. {H; T}10 or {A;C; G; T}*.

Event: Any subset of the sample space

E.g.  4 heads; DNA seqs w/no run of > 50 As.
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Probability theory 
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Definitions, axioms, theorems (1)
 If S is a sample space and A is an event, then Pr(A) is a number 

representing its probability

 Axiom 1. For any event A, Pr(A) > 0

 Axiom 2. If S is a sample space, Pr(S) = 1

 Events A, B are disjoint iff ; The set {A1, A2, …} is 

disjoint iff every pair is disjoint. Disjoint events are mutually 

exclusive.

 Axiom 3. For any finite or infinite collection of disjoint events 

A1, A2, …,  

BA
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Definitions, axioms, theorems(2)

 Theorem 1.

 Theorem 2. For any event A where Ac is the complement of A, 

 Theorem 3. For any event A,  

 Theorem 4. If          , then 

 Theorem 5.  

0)Pr( 
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Probability theory 

Joint, conditional, and marginal probabilities

 Joint probability: P(A,B): “probability of A and B”

 Conditional probability: P(A|B) : “probability of A given B” 

 P(A|B) = P(A, B)/P(B)

 Marginal probability: 

 Examples:

 The occasionally dishonest casino. Two types of dice: 

99% are fair, and 1% are loaded such that 

Conditional P(6|loaded), joint P(6, loaded); marginal P(6)
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Independence

 If  Pr(A|B)=Pr(A), we say A is independent of B. 

Pr(A, B) = Pr(A)Pr(B)

If A is independent of B, then B is independent of A. 

A and B are independent
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Four rules for manipulating probability expressions

1. Chain rule

Example: 
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Four rules for manipulating probability expressions

2. Bayes rule

Example: 
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Four rules for manipulating probability expressions

3. Summing out (Marginalizing)
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Four rules for manipulating probability expressions

4. Exhaustive Conditionalization
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Statistical inference

 Bayesian statistical inference

 Maximum likelihood inference

 Frequentist inference

Probability theory 
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Bayesian statistical inference

The probability of a hypothesis, H, given some 
data, D.

Bayes’ rule:  P(H|D) = P(H)*P(D|H)/P(D) 

H: hypothesis, D: data

 P(H):             prior probability

 P(D|H) :         likelihood 

 P(H|D):          posterior probability

 P(D):             marginal probability:

Probability theory 
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Bayesian statistical inference

Examples 
1. The occasionally dishonest casino. We choose 

a die, roll it three times, and every roll comes 
up a 6. Did we pick a loaded dice? 
(99% are fair, and 1% are loaded such that              )

Probability theory 
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Ans: Let H stand for “picked a loaded die”, then

P(H|6, 6, 6) = P(6, 6, 6|H) P(H)/P(6, 6,6) ~=0.21

5.06 P



Maximum likelihood inference

For a model M, find the best parameter Ѳ={Ѳi} 
from a set of data D, i.e.,

Assume dataset D is created by model M with 
parameter Ѳ0 : K observable outcome ωi, i=1, …, 
K, with frequencies ni, i=1, …, K.  Then, the best 
estimation of P(ωi |Ѳ0, M) is ni/Σnk. 

Probability theory 
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Maximum likelihood inference

P(x|y): probability or likelihood 

Likelihood ratios; log likelihood ratios (LLR)
P(D| Ѳ1 ,M)/P(D/ Ѳ2,M); log(P(D| Ѳ1 ,M)/P(D/ Ѳ2,M))

Substitution matrices are LLRs
Derivation of BLOSUM matrices (Henikoff 1992 

paper)

 Interpretation of arbitrary score matrices as 
probabilistic models (Altschul 1991 paper)

Probability theory 
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Maximum likelihood inference
Derivation of BLOSUM matrices (Henikoff 1992 paper)

 aa pair frequency table f: {fij },

Compute a LLR matrix

Expected probability of each i,j pair:

substitution matrix:

Probability theory 
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Frequentist inference

Statistical hypothesis testing and confidence 
intervals

Examples: 

Blast p-values and E-values

P(S >= x)

Expectation value, E=NP(S>=x)

Probability theory 
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Information theory （信息论）

How to measure the degree of conservation? 

Shannon entropy （香农熵）

Relative entropy（相对熵）

Mutual information （互信息量）

Probability theory 
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Shannon entropy: A measure of uncertainty

Probability P(xi) for discrete set of K events 
x1, …, xk, the Shannon entropy H(X) is 
defined as 

 Unit of Entropy: ‘bit’ (use logarithm base 2)

H(X) is maximized when P(xi)=1/K for all i. 

H(X) is minimized when P(xk)=1, and P(xi)=0 
for all i≠K. 

Probability theory 
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Information: a measure of reduction of 
uncertainty 

the difference between the entropy before 
and after a ‘message’ is received

I(X) = Hbefore – Hafter

Probability theory 
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Shannon entropy: A measure of uncertainty

 Example: in a DNA sequence aє{A, C, G, T}, Pa=1/4; then 

Information: A measure of reduction in 
uncertainty 

Example: measure the degree of conservation of a 
position in a DNA sequence

In a position of many DNA sequences, if PC=0.5 and PG=0.5, 
then Hafter= - 0.5log20.5 - 0.5log20.5 = 1 bits. 

The information content of this position is 

2-1=1 bits

Probability theory 
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Josep F. Abril et al. Genome Res. 2005; 15: 111-119

Patterns in Splice Sites
Donor Sites Acceptor Sites

Sequence data from RefSeq of human, mouse, rat and chicken.  



Relative entropy: a measure of uncertainty

a different type of entropy

Property of a relative entropy

H(P||Q) ≠H(Q||P)

H(P||Q) ≥ 0

Can be viewed as the expected LLR. 

Probability theory 
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Proof of Relative entropy is always nonnegative

Probability theory 
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Mutual information M(XY)

Probability theory 
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Parameter estimation
Maximum likelihood estimation (ML)

Maximum a posterior estimation(MAP)

Expectation maximization (EM)

Probability theory 
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Parameter estimation
Maximum likelihood estimation: use the observed 

frequencies as probability parameters, i.e.,

Maximum a posterior estimation(MAP)

“Plus-one” prior, 

Pseudocounts

Probability theory 
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Parameter estimation
EM: A general algorithm for ML estimation with 

“missing data”.
 Iteration of two steps:

 E-step: using current parameters, estimate expected 
counts

M-step: using current expected counts, re-estimate 
new parameters

Example: Baum-Welch algorithm for HMM 
parameter estimation.

Convergence guaranteed 

Probability theory 
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