SE ALL TO TONG LINE

Course organization

- Introduction (Week 1-2)
 - Course introduction
 - A brief introduction to molecular biology
 - A brief introduction to sequence comparison
- Part I: Algorithms for Sequence Analysis (Week 3 8)
 - Chapter 1-3, Models and theories
 - » Probability theory and Statistics (Week 3)
 - » Algorithm complexity analysis (Week 4)
 - » Classic algorithms (Week 5)
 - Chapter 4. Sequence alignment (week 6)
 - Chapter 5. Hidden Markov Models (week 7)
 - Chapter 6. Multiple sequence alignment (week 8)
- Part II: Algorithms for Network Biology (Week 9 16)
 - Chapter 7. Omics landscape (week 9)
 - Chapter 8. Microarrays, Clustering and Classification (week 10)
 - Chapter 9. Computational Interpretation of Proteomics (week 11)
 - Chapter 10. Network and Pathways (week 12,13)
 - Chapter 11. Introduction to Bayesian Analysis (week 14,15)
 - Chapter 12. Bayesian networks (week 16)

Chapter 5 Hidden Markov Models

(隐马尔科夫模型)

Chaochun Wei Spring 2018

Contents

- Reading materials
- Introduction to Hidden Markov Model
 - Markov chains
 - Hidden Markov Models
 - Three problems of HMMs
 - Calculate the probability from observations and the model
 - Parameter estimation for HMMs

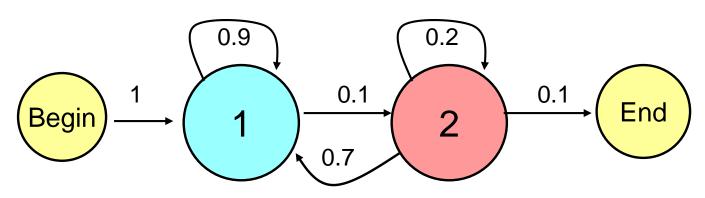
- Rabiner, L.(1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993), Fundamentals of Speech Recognition, Prentice Hall.

Markov chain: a process that the current state depends on at most a limited number of previous states

- Weather
 - Sunny, Rain, Rain, Sunny, Cloudy, Cloudy,....
- Stock market index
 - Up, up, down, down, up, up, up,
- Girl/boy friend's mood
 - High, low, low, high, high, ...
- Genome sequence
 - ATGTTAGATATAACAGATAA
- Flip coins
 - HTTTHHHHHHH

Hidden Markov Model

HMM for two biased coins flipping



$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$\pi^* = \arg\max P(x,\pi)$$

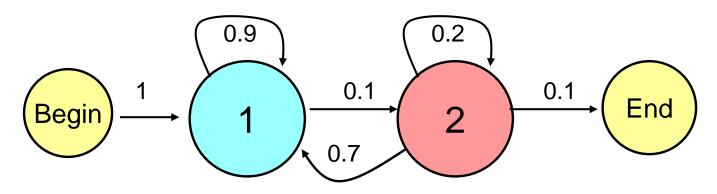
Hidden Markov Model

Elements of an HMM (N, M, A, E, Init)

- N: number of states in the model
 - $S=\{S_1, S_2, ..., S_N\}$, and the state at time t is q_t .
- 2. M: alphabet size (the number of observation symbols)
 - $V = \{v_1, v_2, ..., v_M\}$
- 3. A: state transition probability distribution
 - A= $\{a_{ij}\}$, where $a_{ij}=P[q_{t+1}=S_j|q_t=S_i]$, $1 \le i,j \le N$
- 4. E: emission probability
 - E= $\{e_j(k)\}$ (observation symbols probability distribution in state j), where $e_i(k)=P[v_k \text{ at } t \mid q_t=S_i\},\ 1 \le j \le N,\ 1 \le k \le M$
- 5. Init: initial state probability, π_i
 - Init= $\{T_i\}$, where $T_i = P[q_1 = S_i]$, $1 \le i \le N$.

- HMM can be used as a generator to produce an observation sequence O=O₁O₂...O_T, where each O_t is one of the symbols from V, and T is the number of observations in the sequence.
 - 1. Choose an initial state q₁=S_i according to Init;
 - 2. Set t=1;
 - 3. Choose $O_t=v_k$ according to $e_i(k)$ (the symbol probability distribution in state S_i);
 - 4. Transit to a new state $q_{t+1}=S_j$ according to a_{ij} ;
 - 5. Set t=t+1; return to step 3 if t<T; otherwise terminate the procedure.

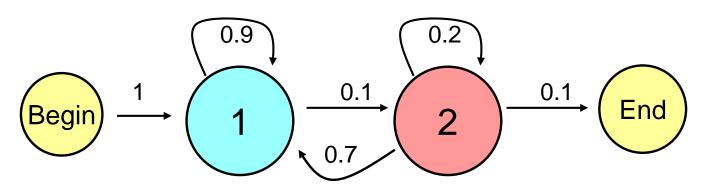
HMM for two biased coins flipping



$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$P(x, \pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T-1} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i)))$$

HMM for two biased coins flipping



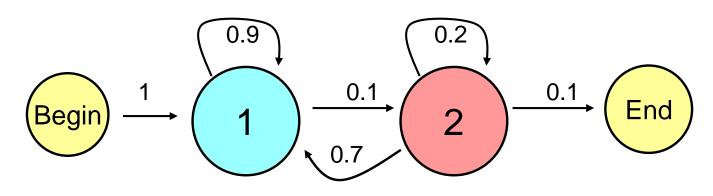
$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221 Hidden state sequence \mathcal{T}

$$P(x, \pi \mid \lambda) = ?$$

HMM for two biased coins flipping



$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221 Hidden state sequence \mathcal{T}

$$P(x,\pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i)))$$

$$= 1 * e_1(T) * (a_{11}e_1(T)) * (a_{12}e_2(H)) * (a_{22}e_2(H)) * (a_{21}e_1(T))$$

$$= 1 * 0.2 * (0.9 * 0.2) * (0.1 * 0.3) * (0.2 * 0.3) * (0.7 * 0.2)$$

Hidden Markov Model

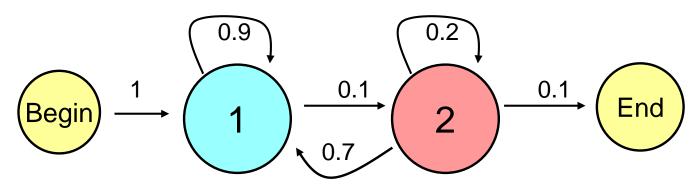
HMM: $\lambda = \{N, M, A, E, Init\}$ or $\lambda = \{A, E, Init\}$

Three basic problems for HMMs

- Problem 1: Given the observation sequence O=O₁O₂...O_T, and a model λ={A, E, Init}, how to compute P(O| λ), the probability of the observation sequence given the model?
- Problem 2: Given the observation sequence O=O₁O₂...O_T, and a model λ={A, E, Init}, how to choose a corresponding state sequence Q=q₁q₂...q_T, which is optimal in some meaningful sense..
- Problem 3: how to estimate model parameters $\lambda = \{A, E, Init\}$ to maximize $P(O|\lambda)$.

Most Probable Path and Viterbi Algorithm

Time complexity $O(N^2L)$ space complexity O(NL)Solution to problem 2: prob of best state sequence Viterbi for the HMM for two biased coins flipping



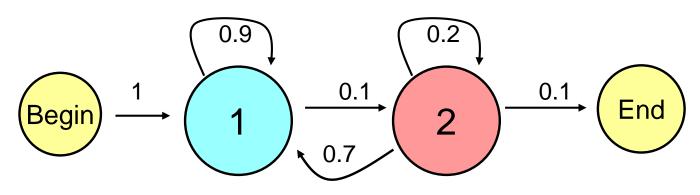
$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

Observed sequence x
 Hidden state sequence TT

11221	i ildacii 3	tate sequei			
Т	Т	Н	Н	Т	
0	1	2	3	4	

	0	1	2	3	4
)					
ı					

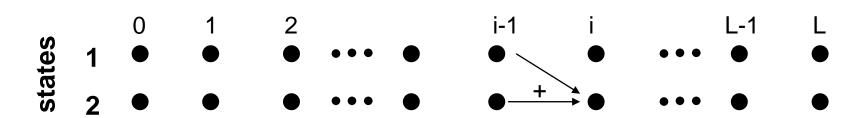
Viterbi for the HMM for two biased coins flipping



$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

	I I HH I Observed sequence x											
	11221 Hidden state sequence \mathcal{T}											
	Т		Н	Н	Т							
	0	1	2	3	4							
1	0.2	Max0.2*(0. 9 *0.2, 0) = 0.036	max0.8*(0.036* 0.9, 0.014*0.7) = 0.0259	Max 0.8 * (0.0259*0.9, 0.0108*0.7) =	=max0.2*(0.018662* 0.9, 0.000777*0.7) = 0.003359							
				0.018662								
	0	,	Max0.3*(0.036*	Max0.3(0.0259*	-max0.3(0.018662*0							
2		2 * 0.1, 0) = 0.014	0.1 0.014*0.2) = 0.0108	0.1, 0.0108*0.2) = 0.000777	.1, 0.000777*0.7) = 0.0005599							

Probability of All the Possible Paths and Forward Algorithm



Let
$$f_j(i) = \Pr(x_0, ..., x_i, \pi_i = j)$$

$$f_j(0) = \pi_j e_j(x_0)$$

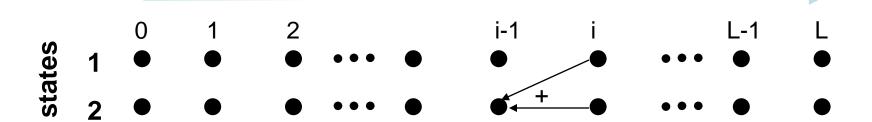
$$f_j(i) = e_j(x_i) \sum_{k} (f_k(i-1)a_{kj})$$

Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} f_{k}(L)$$

Solution to problem 1: prob of observation

Backward Algorithm



Let
$$b_j(i) = \Pr(x_{i+1}, x_{i+2}, \dots, x_L, \pi_i = j)$$

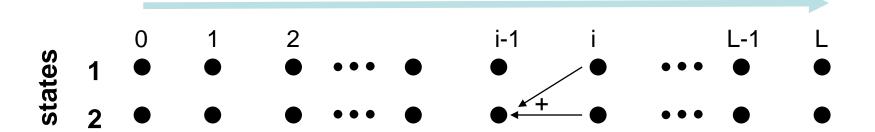
$$b_i(L) = 1$$

Recursion (i=L-1, L-2, ..., 0, j=1, ..., N)
$$b_j(i) = \sum_k (a_{jk}e_k(x_{i+1}))b_k(i+1)$$

Probability of all the probable paths

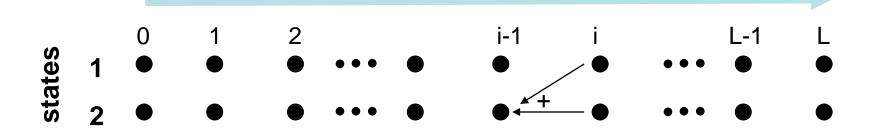
$$P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} b_{k}(0)$$

Decoding with Posterior Probability



$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

Decoding with Posterior Probability



Posterior Probability

$$P(\pi_{i} = k \mid x) = \frac{P(\pi_{i} = k, x)}{P(x)}$$

$$= \frac{f_{k}(i) * b_{k}(i)}{\sum_{k} (f_{k}(i) * b_{k}(i))}$$

Problem 3: Optimize the model parameters from the observation

- With annotations
 - Maximum likely-hood ratio
- Without annotations
 - Baum-Welch algorithm (EM algorithm)

Baum-Welch algorithm (estimate model parameters)

- Goal: given the observation sequence data set,
 estimate the model parameter λ to maximize P(O| λ).
- Algorithm:
 - 1. initialize the model λ_0 ,
 - 2. calculate the new model λ based on λ_0 and the observation sequences
 - 3. stop training if log $P(X|\lambda)$ log $(P(X|\lambda_0)$ < Delta
 - 4. otherwise, let $\lambda_0 = \lambda$, and go to step 2.

Baum-Welch method (EM method)

\oplus HMM: $\lambda = \{A, B, Init\}$, Without annotations

Let
$$\xi_t(i,j) = P(\pi_t = i, \pi_{t+1} = j \mid x, \lambda)$$
 then $\xi_t(i,j) = \frac{f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1)}{\sum\limits_{i=j}^{N}\sum\limits_{j}(f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1))}$ Let $\gamma_t(i) = \sum\limits_{j=1}^{N}\xi_t(i,j)$ then $\sum\limits_{t=0}^{L}\gamma_t(i) = \text{expected number of transitions from } S_i$ $\sum\limits_{t=0}^{L}\xi_t(i,j) = \text{expected number of transition } S_i$ to S_j

SE COLONG DE LA CO

Baum-Welch method (EM method) (2)

HMM: λ={A, B, Init}, Without annotations

Then, \overline{Init}_i = expected frequency in S_i at time 0 = $\gamma_0(i)$

$$\frac{1}{a_{i,j}} = \frac{\exp{ected} \quad number \quad of \quad tranistions \quad from \quad S_i \quad to \quad S_j}{\exp{ected} \quad number \quad of \quad tranistions \quad from \quad S_i}$$

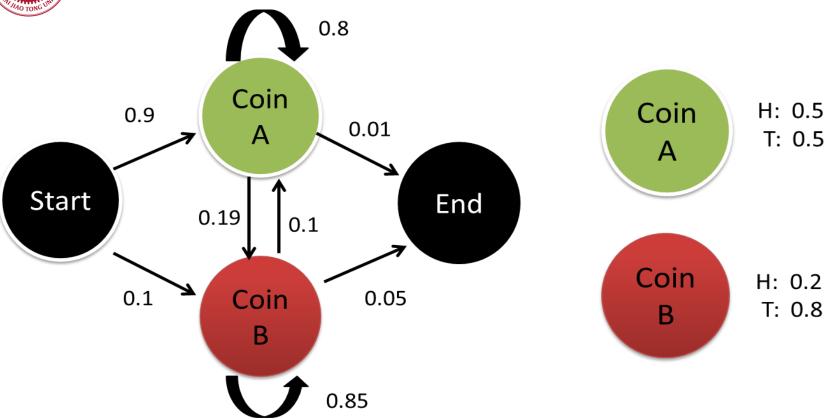
$$=rac{\sum\limits_{t=0}^{L} oldsymbol{\xi}_{t}(i,j)}{\sum\limits_{t=0}^{L} oldsymbol{\gamma}_{t}(i)}$$

$$\frac{1}{e_i(k)} = \frac{\exp{ected} \quad number \quad of \quad times \quad in \quad state \quad j \quad and \, observing \quad symbol \quad v_k}{\exp{ected} \quad number \quad of \quad times \quad in \quad state \quad j}$$

$$= \frac{\sum_{t=0}^{L} \gamma_t(i)}{\sum_{t=0}^{s.t.x_t=v_k} \gamma_t(i)}$$

One more example:

Flipping two coins

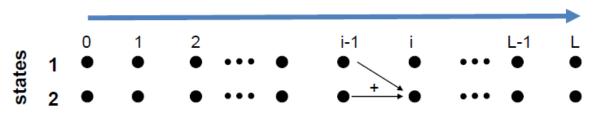


Θ O= HHTHHTTTHT, P(O|λ)=?

Problem 1: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O \mid \lambda)$, the probability of the observation sequence given the model?

Forward Algorithms

	н	Н	Т	н	н	Т	Т	Т	н	Т	Emd
Α	0.45	0.181	0.073 42	0.031 44	0.013 06	0.053 71	0.023 45	0.001 11	5.817 e-4	2.580 e-4	2.42
В	0.02	0.0205	0.041 45	0.009 83	0.002 86	0.003 94	0.003 49	0.002 73	5.067 e-4	4.329 e-4	3e-5



Let
$$f_j(i) = \Pr(x_0, ..., x_i, \pi_i = j)$$

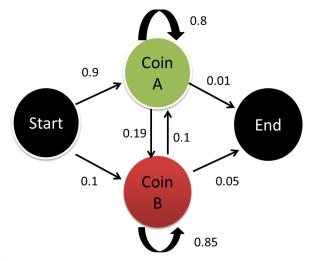
Initialization (j=1...N) $f_j(0) = \pi_j e_j(x_0)$

Recursion (i=1...L;
$$f_j(i) = e_j(x_i) \sum_k (f_k(i-1)a_{kj})$$

 $j = 1, ..., N$)

Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} f_k(L)$$





- O= HHTHHTTTHT
- argmax(P(O, Q, λ))

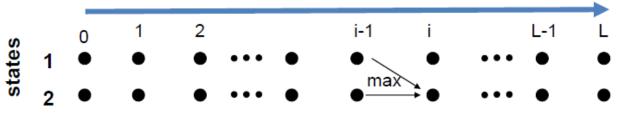
Problem 2: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to choose a corresponding state sequence $Q=q_1q_2...q_7$, which is optimal in some meaningful sense..

SE LONG COMPANY OF THE PARK OF

Viterbi Algorithms

A -> A -> A -> A -> B -> B -> B -> B

	H	H	Τ	T	Ħ	H	T	T	T	Н	T	Ermadl
A		0.45	0.18	0.072	0.028 8	0.011 5	0.004 6	1.843 e-3	7.372 e-4	2.949 e-4	1.180 e-4	4.68
В	•	0.02	0.01 71	0.027 4	4.652 e-3	1.109 e-3	1.751 e-3	1.191 e-3	8.097 e-4	1.376 e-4	9.360 e-5	0e-6



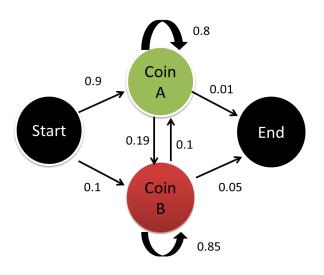
Let
$$f_{j}(i) = \max_{\{\pi_{0},...,\pi_{i-1}\}} (\Pr(x_{0},...,x_{i-1},x_{i},\pi_{0},...,\pi_{i-1},\pi_{i}=j))$$

Initialization (j=1...N)
$$f_j(0) = \pi_j e_j(x_0)$$

Recursion (i=1...L)

$$f_j(i) = e_j(x_i) \max_k (f_k(i-1)a_{kj});$$

 $ptr_j(i) = \arg\max_k (f_k(i-1)a_{kj}).$



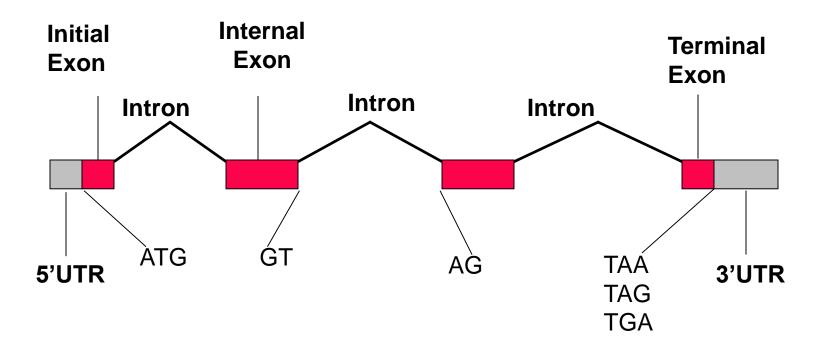


Problem 3. Model parameter estimation

See

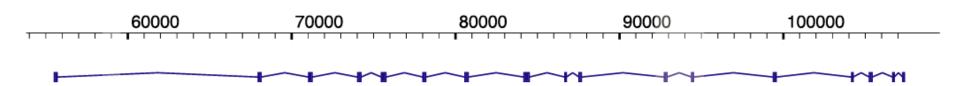
- Rabiner, L.(1989) A Tutorial on Hidden Markov
 Models and Selected Applications in Speech
 Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993),
 Fundamentals of Speech Recognition, Prentice Hall.

Gene Structure prediction with HMM



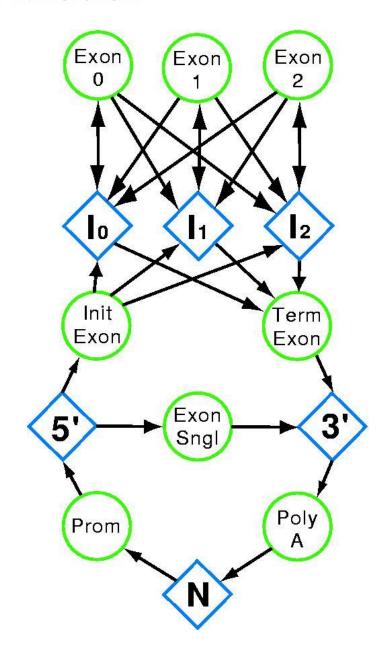
A gene is a highly structured region of DNA, it is a functional unit of inheritance.

A Typical Human Gene Structure



Gene Prediction Model

- HMM (27 states)
- Each state
 - For a gene structure
- State-specific models (Generalized HMM)
 - Length distribution
 - Sequence content



Another example: Pair HMM for local alignment

