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arkov chain: a process that the current state depends
on at most a limited number of previous states

Weather
* Sunny, Rain, Rain, Sunny, Cloudy, Cloudy,....

Stock market index

 Up, up, down, down, down, up, up, up, ....
Girl/boy friend’s mood

* High, low, low, high, high, high, ...
Genome sequence

- ATGTTAGATATAACAGATAA
Flip coins

e HTTTHHHHHH



Hidden Markov Model

HMM for two biased coins flipping

0.9
_ 1
Begin ) —

e,(H)=0.8,¢,(T)=0.2,e,(H)=0.3,e,(T)=0.7

[THHTTHTTTTTHTHHHHHTHTH Observed sequence X

Hidden state sequence /C

7" =argmax P(x, )

T



Hidden Markov Model

* Elements of an HMM (N, M, A, E, Init)

1. N: number of states in the model
« S={S,, S,, ..., Sy}, and the state at time t is .

2. M: alphabet size (the number of observation symbols)
* V={v,, V5, ..., V\y}

3. A: state transition probability distribution
* A={a;}, where a;=P[q,,,;=5;|q,=S]], 1=i,j =N

4. E: emission probability

* E={g;(k)} (observation symbols probability distribution in
state j), where e(k)=P[v, att| g, = S}, 1 <j <N, 1 <k <M

5. Init: initial state probability, 7.
* Init=fz; }, Whereyz-i =P[q,=S], 1 =i =N.



HMM is a generative model

HMM can be used as a generator to produce an
observation sequence 0=0,0....0, where each
O, Is one of the symbols from V, and T is the
number of observations in the sequence.

1. Choose an initial state q,=S;according to Init;
2. Sett=1;

3. Choose O,=v, according to e;(k) (the symbol
probability distribution in state S));

4. Transit to a new state q,,,=S; according to a;;

Set t=t+1; return to step 3 If t<T; otherwise terminate
the procedure.



HMM is a generative model
HMM for two biased coins flipping

0.9
_ 1
Begin )| —

e(H) =0.8,e(T) =0.2,e,(H) =0.3,e,() =0.7

[THHTTHTTTTTHTHHHHHTHTH Observed sequence x

Hidden state sequence 7C

P, | A) = Init, * e, (x(0)) * e 1(cfz'”ﬂj+1<e>ﬂj+1 (x(1) )

<I<T-



HMM is a generative model

HMM for two biased coins flipping

( 09 ) ( 02 ]
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,¢,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence TJC

Plx, 7| 1) =2



HMM is a generative model

HMM for two biased coins flipping

(09 ) ( 0.2 )
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,¢,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence TJC
P(x,z|4)=Init_*e_ (x(O))*Ol_‘IT (@, .. e, (x(1))

=17e,(T)*(a,6,(T)) ™ (€, (H)) ™ (a8, (H)) * (8, (T))
=1%0.2*(0.9*0.2>*(0.1%0.3)*(0.2*0.3)*(0.7*0.2)



Hidden Markov Model

HMM: A={N, M, A, E, Init} or A= {A, E, Init}

Three basic problems for Hmms

Problem 1: Given the observation sequence 0=0,0,...0;, and a
model A={A, E, Init}, how to compute P(O| A), the probability of
the observation sequence given the model?

Problem 2: Given the observation sequence 0=0,0,...0;, and a
model A={A, E, Init}, how to choose a corresponding state
sequence Q=d,0,-..91, Which is optimal in some meaningful
sense..

Problem 3: how to estimate model parameters A={A, E, Init} to
maximize P(O| A).
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Most Probable Path and Viterbi Algorithm

. o 1 2 i-1 i -1 L
C 1 @ @ @ e @ ° @ o 0 O
©
Z 2 @ ® @ o O .M. coe @O o
| et f. (i) = max }(Pr(xo,..., X 1y Xy TTgyeney i gy 7T = ]))
7T aeeny Tigq

Initialization (j=1...N) f:(0)=7e ()
Recursion (i=1...L) f (i)=¢e;(x) mslx(fk(i —-1ay);
ptr; (1) =arg mlgx( f (1—1)a).

Time complexity O(NZ?L) space complexity O(NL)
Solution to problem 2: prob of best staté sequence



> Viterbi for the HMM for two biased coins flipping

@ < 0.2\
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,¢,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence JC
T T H H T

0 1 2 3 4




.2, Viterbi for the HMM for two biased coins flipping

0.2

( 0.9 ] ( ]
N\ 1 0.1 0.1
Begin) — - -

e,(H)=0.8,¢,(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence JC

T T H H T
0 1 2 3 4
0.2 | Max0.2*(0. | max0.8*(0.036* | Max 0.8 * =max0.2*(0.018662*
1 9+*0.2, 0) |0.9,0.014*0.7) |(0.0259*0.9, 0.9, 0.000777*0.7) =
= 0.036 = 0.0259 0.0108*0.7 ) = [0.003359
—>\\ \ 0.018662

0 ax0.7*( 0. | Max0.3*(0.036* ) ax0.3(0.0259* ax0.3(0.018662*0 |
2 2X0.1, 0) [0.10.014*0.2) | 0¥, 0.0108*0.2) |.1M9.000777*0.7) =
= 0.0408 = 0.000777 0.0005599

=0.6014




Probability of All the Possible Paths and

Forward Algorithm
" 0 1 2 -1 i L-1 L
o 1 @ ® @ o O ® ® oee O ®
2 2 0 @ @ ese @ @ ™ @ v 0 ©

et f,(i)) =Pr(xq,.... X;, 7, = J)
f.(0)=me;(x,)

Initialization (j=1...N)
Recursion (i=1...L; ] )
rston{ f(0) =€, () (F,(i-Day)

] = 1, ey N) K

Probability of all the _ _
probable paths P() ; P 7) Zk: fi(L)
Solution to problem 1: prob of observation
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Let D (1) =Pr(X,y, X500 X, 7 = J)
Initialization (j=1...N) b. (L) =1
j

Recursion (=L-1, L-2, ..., O,
1.0 N) bj (') :Z(ajkek (Xi+1))bk (i"‘l)
k

Probabillity of all the
probable paths P(x) = Z P(x, )= Zbk (0)
T k
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Posterior Probability

-1 i

® ./.

P(r, =k | X) =

L-1 L
cee @ ®
cee @ ®
P(z, =k, x)

P(x)



7))
)
o
©
b
(7))

Posterior Probability

P(z. =k, X)
P(x)

P(rr, =k | X) =

_f()*b ()
> (£,(0)*b, (i)




Problem 3: Optimize the model
parameters from the observation

HMM: A:{A, E1 Inlt}
With annotations
« Maximum likely-hood ratio

Without annotations
« Baum-Welch algorithm (EM algorithm)



Baum-Welch algorithm
(estimate model parameters)

Goal: given the observation sequence data set,
estimate the model parameter A to maximize P(O| A).

Algorithm:
1. initialize the model A,

2. calculate the new model A based on A, and the observation
sequences

3. stop training if log P(X|A) - log(P(X|A,) < Delta

4. otherwise, let A, = A, and go to step 2.

21



Baum-Welch method (EM method)

HMM: A={A, B, Init}, Without annotations

et & (0, ) =P(m =i, 7 = 1%, 2)
(D)3 &, (X,.,)b; (t +1)

then S (1, ])= N N
EE(1, (D)3, (%,.)b, (t +1)

et 7 ()= % &, )

L

then tzo Vi (|) = expected number of transitions from S
_l_ L] [
EO ét (I, j) = expected number of transition S;to S;



Then, |nit; = expected frequency in S, attime 0= (I)

- _expected number of tranistions from S, to S,
o expected number of tranistions from S

L
_Zal )
L -
2 7:(1)
: (k)_expected number of times in state | andoberving symbol v,
| expected number of times in state |
L
Z7t(i)
t=0

L

Z 1,(1)



One more example: Flipping two coins

{\ 0.8

0.9 Coin Coin H: 0.5

/ A % A T: 0.5

0.19 T _

0.1
/
0.05

o~

U 0.85
O= HHTHHTTTHT, P(OJA)=?

Problem 1: Given the observation sequence 0=0,0,...0;, and
a model A={A, B, Init}, how to compute P(O| A), the probability

of the observation sequence given the model? ,
)



A 0.073 | 0.031 | 0.013 [ 0.053 | 0.023 | 0.001 | 5.817 | 2.580
0.45 {01811,  [ag4 Jos |71 |45 |11 |esa |ea4 5 42
B 002 l0.0205! 0.041 | 0.009 | 0.002 { 0.003 | 0.003 | 0.002 | 5.067 | 4.329 | 3e-5

45 83 86 94 49 73 e-4 e-4

1 2 i-1 [ L-1

0 L
® ¢ @ o0 @ .\-. eee @ @
o o @ ccc @ 0 3@ oo @ ®

states

Let j} (7) =Pr(x,....x,. 7, = J)
initialization (j=1..N)  f;(0)=7 e, (x,)

Recursion (i=1...L; j}(i) =e, (xf)Z(ﬂ,(f —-Da,,)
-

j=1,.,N)
Probability of all the
probable paths P(x) = ZP(-’C:?’T) = ka (L)
aT I's




O= HHTHHTTTHT
argmax(P(O, Q, A))

Problem 2: Given the observation sequence 0=0,0,...0, and
a model A={A, B, Init}, how to choose a corresponding state
sequence Q=q,q,...qy, Which is optimal in some meaningful
sense..
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Viterbi Algorithms
"A>SA>A>A>A>B->B->B->B->B

H H T H H T T T H T Emdl
0.072 | 0.028 },0.011 [ 0.004 | 1.843 | 7.372 |12.949 | 1.180
*0'45 0.18 s D5 D6 Me3 Pes *e—él % es 468
B 0.02 | 0.01 |0.02744.652 |1.109 |1.751 | 1.191 ,/ 8.097 | 1.376 | 9.360 }. Oe-6
71 4 e-3 e-3 e-3 e-3 e-4 e-4 *e—S
" 0 1 2 i-1 i L-1
2 1 0 o @ ecc O ® ) ese @
(1]
"u-'J' 2 . .. . ee e . .ﬁ.\.

Let f;@)= max (Pr(x,.....x,.x;.
(T ey}

Initialization (j=1...N) S, (0)=7.e.(x,)
Recursion (i=1...L)

fs‘ (1) = €; (x;) II]E;CIX (fei— 1)“@):
pﬁ}(f) - argmgx (fe(i— l)akj)'




Problem 3. Model parameter estimation

See

® Rabiner, L.(1989) A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77 (2) 257-
286

® Rabiner, L., and Juang, Biing-Hwang, (1993),
Fundamentals of Speech Recognition, Prentice
Hall.
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Gene Structure prediction with HMM

Initial Internal

Exon Exon Terminal

Exon
Intron

e 4 \
5UTR AG TAA 3UTR
TAG
TGA

A gene is a highly structured region of DNA, it is a functional unit of inheritance.

29



60000 70000 80000 90000 100000
LI T T T T T T T T T 1T 7T 1 T T T [ |
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Gene Prediction Model

_:’7Exon:“‘ /Exon’ "?-':Exon"""}
0/ U1/ \ 2/

HMM (27 states)

Each state
 For a gene structure
State-specific models
(Generalized HMM)
 Length distribution

e Sequence content

31



Pair HMM for local alignment
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