Chapter 2: Algorithm Complexity Analysis

Chaochun Wei
Spring 2019
Contents

● Reading materials

● Why do we need to analyze the complexity of an algorithm?
 ● Examples

● Introduction
 ● Algorithm complexity
 ● “Big O” notation: O()
Reading

Cormen book:

(read Chapter 1 and 2, page 1-44).
A real example: Exon-capture data analysis

There are ~60 millions of short reads sequenced from exon regions of a human genome. We need to figure out the how many exons were covered with at least 10 reads.

Steps:
1. Reads are aligned to the genome;
2. Each alignment is checked to see the exon it covers;
3. For each exon, check the number of reads cover the exon;
4. For all exons, filter out those with read number < 10.
A real example: Exon-capture data analysis

Exon N

Start Site A Site B End

Read Read Read Read

Read Read Read Read

Depth=5 Depth=3

Reference sequence
A real example: Exon-capture data analysis

1 days later

Student: I have created a program to do the analysis. It’s running.

Teacher: Cool. Let me know when your analysis finishes.
A real example: Exon-capture data analysis

6 days later…

Student: My program has been running for 5 days, and it keeps on running. I have no idea about what is happening and what to do with it.

Teacher: Its core is a sorting algorithm with a complexity of at most $O(N \cdot \log N)$. It should be done within a few minutes!

Student: What?.....
Algorithm and its complexity

An **algorithm** is any well-defined computational procedure that takes in some **inputs** and produces some **outputs**.

Example: Sort an array of numbers
3, 2, 4, 5, 7, 1, 6 \(\rightarrow\) 1, 2, 3, 4, 5, 6, 7
Algorithm and its complexity

An algorithm is any well-defined computational procedure that takes in some inputs and produces some outputs.

Complexity: a function of input size
- Time complexity: the running time
- Space complexity: the memory size required
Algorithm and its complexity

Input size

- Number of items in the input
 - Sorting problem
 - FFT
- Total number of bits needed to represent the input
 - Arithmetic operation (+, -, x, /)
- The value of input
 - Factorial (N!)

Multiple input sizes

- Need to specify which input size is used
 - Graph operation (number of Vertices, and edges)
Algorithm and its complexity

Before we start
- we use a generic one-processor, random-access machine.
 No parallel
Algorithm and its complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

Insertion sort (A)
for j = 2 to length(A)
 do key = A[j]
 /*insert A[j] into the sorted sequence A[1...j-1]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i];
 i=i-1;
 A[i+1]=key;
Algorithm and its complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6
Algorithm and its complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

Insertion sort (A)

for j = 2 to length(A)

do key = A[j]

/* insert A[j] into the sorted sequence A[1...j-1]

i=j-1

while i>0 and A[i]>key

do A[i+1]=A[i];

i=i-1;

A[i+1]=key;

Algorithm time complexity: O(N^2)
Worst-case and average-case analysis

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

Insertion sort (A)

for j = 2 to length(A)
do key = A[j]
 /*insert A[j] into the sorted sequence A[1...j-1]
 i=j-1
 while i>0 and A[i]>key
 do A[i+1]=A[i];
 i=i-1;
 A[i+1]=key;

Algorithm time complexity: O(N^2)
Order of growth

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

Insertion sort:
Algorithm run time complexity: $O(N^2)$
Order of growth: 2
O-notation (big-O notation): Asymptotic upper bound

\[O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq c \ g(n) \text{ for all } n \geq n_0 \} \]

Note about O-notation operations:
\[O(k_1 \cdot N^2 + k_2 \cdot N^3) = O(N^3) \] for constants \(k_1, k_2 \)
O-notation (big-O notation): Asymptotic upper bound

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

Insertion sort:
algorithm time complexity: $O(N^2)$
Sorting with time complexity of $O(N^2)$

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 \rightarrow 1, 2, 3, 4, 5, 6

```
Sort(A)
for j = 2 to length(A)
do key = A[j]
   /*Use binary search to insert A[j]
   /*into the sorted sequence A[1…j-1]
i=j-1
    Binary_search(A[j], A[1…j-1],)
```

Algorithm complexity
Sorting

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 → 1, 2, 3, 4, 5, 6

There are a lot of sorting algorithms:
Heap sort (O(N*\log N))
Merge sort (O(N*\log N))
Quick sort (worst-case O(N^2), average O(N\log N))
Merge sort

Merge-Sort(A, p, r)
if p<r
then q=\[(p+r)/2\]
 Merge-Sort(A, p, q)
 Merge-Sort(A, q+1, r)
 Merge(A, p, q, r)

Time Complexity: \[T(N) = \begin{cases}
O(1); & \text{if } N = 1 \\
2T(N/2) + O(N); & \text{if } 2N > 1
\end{cases} \]
Solve it: \[T(N) = O(N\times\log N) \]
Space complexity

Example: Sort an array of numbers
5, 2, 4, 6, 1, 3 \rightarrow 1, 2, 3, 4, 5, 6

Need an array of size N: A[1...N], and 3 temporary variables
O(N)

Example: Sequence alignment

Need a two-dimension array of size N*M, and a constant number of temporary variables
O(N*M) or O(max(N, M))
Other issues

- Input/Output method/place/mode
 - Speed
 - screen << hard disk << memory
- Programming language
 - Speed
 - Perl < java < C++ < C
- Output size
 - Blast: output can be a problem
 - Compressed data vs decompressed data
 - Smaller size
 - Higher read/write speed?