
Course organization
• Course introduction (Week 1)

• Code editor: Emacs （Week 2）
• Part I: Introduction to C programming language (Week 3 - 12)

• Chapter 1: Overall Introduction (Week 3-4)

• Chapter 2: Types, operators and expressions (Week 5)

• Chapter 3: Control flow (Week 6)

• Chapter 4: Functions and program structure (Week 7)

• Chapter 5: Pointers and arrays (Week 8)

• Chapter 6: Structures (Week 10)

• Chapter 7: Input and Output (Week 11)

• Part II: Skills others than programming languages (Week 12- 13)

• Debugging tools（Week 12）

• Keeping projects documented and manageable （Week 13）

• Source code managing （Week 13）

• Part III: Reports from the battle field (student forum) (Week 14– 16)

• Presentation (week 14-15)

• Demo (week 16)1

1896 1920 1987 2006

Chapter 6 Structures

Chaochun Wei

Shanghai Jiao Tong University

Spring 2019

Contents

6.1 Basic of structures

6.2 Structures and Functions

6.3 Arrays of Structures

6.4 Pointers to Structures

6.5 Self-referential structures

6.6 Table lookup

6.7 Typedef

6.8 Unions

6.9 Bit-fields

6.1 Basics of structures

Structure: a collection of one or more variables

grouped under a single name

• Variables (members) can be different types

• Examples:

Keyword: struct

struct Employee {

char *Name;

char *Address;

char *ID;

int Salary;

….

};

struct point {

int x;

int y;

};

6.1 Basic of structures

A struct declaration defines a type.

e.g.: struct point {int x; int y} x, y, z;

Access a member of a structure: structure-name.member

E.g.: struct point pt;

pt.x = 1;

pt.y = 100;

/* pt = {1, 100}; */

printf(“%d, %d”, pt.x, pt.y);

A Structure of structures

• E.g.:

struct rect {

struct point pt1;

struct point pt2;

};

6.2 Structures and Functions

Operations of structures

• Copy

• Assign

• &

• Access to its members (. or ->)

• st.member

• Pointer version: pt->member

Precedence of operations

• . and -> have top precedence

•E.g.,

++p -> len

increases len, not p.

See more details in hands-on experiment 6.2

6.2 Structures and Functions

Pass structure to functions by passing

• members separately

• a structure

• a pointer to a structure

See more details in hands-on experiment 6.2

6.2 Structures and Functions

Pointers to structures

See more details in hands-on experiment 6.2

struct point *pp;

pp = &origin;

printf(“origin is (%d, %d)\n”, ((*pp).x, (*pp).y);

/* the same as */

printf(“origin is (%d, %d)\n”, (pp->x, pp->y);

6.3 Array of structures

Array of structures

Function sizeof ()

• Sizeof object

• sizeof(type_name)

returns the size of object and the type type_name

/* Array of points */

struct point {

int x;

int y;

};

struct point pts[5];

More details can be found in hands-on experiment 6.2, 6.3

6.4 Pointers to structures

Similar to simple types

The size of a structure is not the sum of its

members’

• exmple

• Struct{

char c;

int I;

};

// size of this structure may be not 5 bytes, but 8 bytes.

More details can be found in hands-on experiment 6.3

6.5 Self-referential structures

Recursive declaration of a structure

• E.g.,

struct tnode {

char *word; /* point to the text */

int count; /* number of occurrences */

struct tnode *left; /* left child */

struct tnode *right; /* right child */

};

More details can be found in hands-on experiment 6.5

6.7 Typedef

Creating new data type names

• E.g1:

typedef int length;

length len, maxline;

length *lengths[];

• E.g 2:

typedef struct tnode{

char *word;

int count;

struct tnode *left;

struct tnode *right;

} Treenode;

6.8 Union

A variable holds (at different times) objects

of different types and sizes

• The compiler keeps track of size and types

• A way to manipulate different types of data in a

single area of storage

• Big enough to hold the “widest” member

• E.g.

union u_tag {

int ival;

float fval;

char *sval;

} u;

6.9 Bit-fields

Pack multiple objects into a single machine word

• Storage efficient

• External-imposed data format

• E.g.,

Struct {

unsigned int is_keyword: 1;

unsigned int is_extern: 1;

unsigned int is_static: 1;

} flags;

